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Preface 


This Guidance on the Development, Evaluation, and Application of Environmental Models was prepared in 
response to a request by the U.S. Environmental Protection Agency (EPA) Administrator that EPA’s 
Council for Regulatory Environmental Modeling (CREM) help continue to strengthen the Agency’s 
development, evaluation, and use of models (http://www.epa.gov/osp/crem/library/whitman.PDF). 

A draft version of this document (http://cfpub.epa.gov/crem/crem_sab.cfm) was reviewed by an 
independent panel of experts established by EPA's Science Advisory Board and revised by CREM in 
response to the panel’s comments. 

This final document is available in printed and electronic form.  The electronic version provides direct links 
to the references identified in the document. 

Disclaimer  
 
This document provides guidance to those who develop, evaluate, and apply environmental models. It
does not impose legally binding requirements; depending on the circumstances, it may not apply to a
particular situation. The U.S. Environmental Protection Agency (EPA) retains the discretion to adopt, on a 
case-by-case basis, approaches that differ from this guidance.    
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Executive Summary 

In pursuing its mission to protect human health and to safeguard the natural environment, the U.S. 
Environmental Protection Agency often relies on environmental models. In this guidance, a model is 
defined as a “simplification of reality that is constructed to gain insights into select attributes of a particular 
physical, biological, economic, or social system.” 

This guidance provides recommendations for the effective development, evaluation, and use of models in 
environmental decision making once an environmental issue has been identified. These 
recommendations are drawn from Agency white papers, EPA Science Advisory Board reports, the 
National Research Council’s Models in Environmental Regulatory Decision Making, and peer-reviewed 
literature. For organizational simplicity, the recommendations are categorized into three sections: model 
development, model evaluation, and model application. 

Model development can be viewed as a process with three main steps: (a) specify the environmental 
problem (or set of issues) the model is intended to address and develop the conceptual model, (b) 
evaluate or develop the model framework (develop the mathematical model), and (c) parameterize the 
model to develop the application tool.   

Model evaluation is the process for generating information over the life cycle of the project that helps 
determine whether a model and its analytical results are of sufficient quality to serve as the basis for a 
decision.  Model quality is an attribute that is meaningful only within the context of a specific model 
application.  In simple terms, model evaluation provides information to help answer the following 
questions: (a) How have the principles of sound science been addressed during model development? (b) 
How is the choice of model supported by the quantity and quality of available data? (c) How closely does 
the model approximate the real system of interest? (d) How well does the model perform the specified 
task while meeting the objectives set by quality assurance project planning? 

Model application (i.e., model-based decision making) is strengthened when the science underlying the 
model is transparent.  The elements of transparency emphasized in this guidance are (a) comprehensive 
documentation of all aspects of a modeling project (suggested as a list of elements relevant to any 
modeling project) and (b) effective communication between modelers, analysts, and decision makers. 
This approach ensures that there is a clear rationale for using a model for a specific regulatory 
application.  

This guidance recommends best practices to help determine when a model, despite its uncertainties, can 
be appropriately used to inform a decision. Specifically, it recommends that model developers and users: 
(a) subject their model to credible, objective peer review; (b) assess the quality of the data they use; (c) 
corroborate their model by evaluating the degree to which it corresponds to the system being modeled; 
and (d) perform sensitivity and uncertainty analyses. Sensitivity analysis evaluates the effect of changes 
in input values or assumptions on a model's results. Uncertainty analysis investigates the effects of lack 
of knowledge and other potential sources of error in the model (e.g., the “uncertainty” associated with 
model parameter values). When conducted in combination, sensitivity and uncertainty analysis allow 
model users to be more informed about the confidence that can be placed in model results.  A model’s 
quality to support a decision becomes better known when information is available to assess these factors. 

vii 



  

 

 
 

 
 

 

  

 
 

  
  

 
 

 

 

 

 
 

 

 

 

 
 

 
 
 

 

   

1. Introduction 


1.1 Purpose and Scope of This Document 

The U.S. Environmental Protection Agency (EPA) uses a wide range of models to inform decisions that 
support its mission of protecting human health and safeguarding the natural environment — air, water, 
and land — upon which life depends.  These models include atmospheric and indoor air models, ground 
water and surface water models, multimedia models, chemical equilibrium models, exposure models, 
toxicokinetic models, risk assessment models, and economic models. These models range from simple to 
complex and may employ a combination of scientific, economic, socio-economic, or other types of data.   

As stated in the National Research Council (NRC) report Models in Environmental Regulatory Decision 
Making, models are critical to regulatory decision making because the spatial and temporal scales linking 
environmental controls and environmental quality generally do not allow for an observational approach to 
understand the relationship between economic activity and environmental quality (NRC 2007).  Models 
have a long history of helping to explain scientific phenomena and predict outcomes and behavior in 
settings where empirical observations are limited or not available.   

This guidance uses the NRC report’s definition of a model: 

A simplification of reality that is constructed to gain insights into select attributes of 
a particular physical, biological, economic, or social system. 

In particular, this guidance focuses on the subset of all models termed “computational models” by the 
NRC. These are models that use measurable variables, numerical inputs, and mathematical relationships 
to produce quantitative outputs. (Note that all terms underlined in this document are defined in the 
Glossary, Appendix A).   

As models become increasingly significant in decision making, it is important that the model development 
and evaluation processes conform to protocols or standards that help ensure the utility, scientific 
soundness, and defensibility of the models and their outputs for decision making.  It is also increasingly 
important to plan and manage the process of using models to inform decision making (Manno et al. 
2008).  This guidance document aims to facilitate a widespread understanding of the processes for model 
development, evaluation, and application and thereby promote their appropriate application to support 
informed decision making.  Recognizing the diversity of modeling applications throughout the Agency, 
the principles and practices described in the guidance apply generally to all models used to inform 
Agency decisions, regardless of domain, mode, conceptual basis, form, or rigor level (i.e., varying from 
screening-level applications to complex analyses) (EPA 2001).  The principles presented in this guidance 
are also applicable to models not used for regulatory purposes as experience has shown that models 
developed for research and development have often found useful applications in environmental 
management purposes. 

This guidance presents recommendations drawn from Agency white papers on environmental modeling, 
EPA Science Advisory Board (SAB) reports, NRC’s Models in Environmental Regulatory Decision 
Making, and the peer-reviewed literature.  It provides an overview of best practices for ensuring and 
evaluating the quality of environmental models.   

1 




 

 

  
 

  

  

 

 
 

 

 

  
 

 

 

  
 

 

 
 

 

   
 

 

  

 

These practices complement the systematic QA planning process for modeling projects outlined in 
existing guidance (EPA 2002b).  These QA processes produce documentation supporting the quality of 
the model development and application process (Appendix C, Box C1: Background on EPA Quality 
System).  For example, QA plans should contain performance criteria (“specifications”) for a model in the 
context of its intended use, and these criteria should be developed at the onset of each project.  During 
the model evaluation process, these criteria are subjected to a series of tests of model quality (“checks”). 
Documentation of these specifications and the evaluation results provides a record of how well a model 
meets its intended use and the basis for a decision on model acceptability.   

The primary purpose of this guidance is to provide specific advice on how to best perform these “checks” 
during model development, evaluation, and application.  Following the best practices emphasized in this 
document, together with well-documented QA project plans, will help ensure that results of modeling 
projects and the decisions informed by them heed the principles of the Agency’s Information Quality 
Guidelines (EPA 2002a).  

1.2 Intended Audience 

This document is intended for a wide range of audiences, including model developers, computer 
programmers, model users, policy makers who work with models, and affected stakeholders.  Model 
users include those who generate model output (i.e., who set up, parameterize, and run models) and 
managers who use model outputs.     

1.3 Organizational Framework 

The main body of this document provides an overview of principles of good modeling for all users.  The 
appendices present technical information and examples that may be more appropriate for specific user 
groups. For organizational simplicity, the main body of this guidance has separate chapters on the three 
key topics: model development, model evaluation, and model application. However, it is important to note 
that these three topics are not strictly sequential, For example, the process of evaluating a model and its 
input data to ensure their quality should be undertaken and documented during all stages of model 
development and application. 

Chapter 1 serves as a general introduction and outlines the scope of this guidance.  Chapter 2 discusses 
the role of models in environmental decision making. Figure 1 at the end of Chapter 2 shows the steps in 
the model development and application process and the role that models play in the public policy 
process. Chapters 3 and 4 provide guidance on model development (including problem specification) 
and model evaluation, respectively. Finally, Chapter 5 recommends practices for most effectively 
incorporating information from environmental models into the Agency’s policy or regulatory decisions.   

Several appendices present more detailed technical information and examples that complement the 
chapters.  Appendix A provides definitions for all underlined terms in this guidance, and Appendix B 
summarizes the categories of models that are integral to environmental regulation.  Appendix C presents 
additional background information on the QA program and other relevant topics.  Appendix D presents 
an overview of best practices that may be used to evaluate models, including more detailed information 
on the peer review process for models and specific technical guidance on tools for model evaluation.   

2 




 

 
 

 

 
 

 

 

 

   

1.4 Appropriate Implementation of This Document 

The principles and practices described in this guidance are designed to apply generally to all types of 
models; however, EPA program and regional offices may modify the recommendations, as appropriate 
and necessary to the specific modeling project and application.  Each EPA office is responsible for 
implementing the best practices described in a manner appropriate to meet its needs. 

As indicated by the use of non-mandatory language such as “may,” “should,” and “can,” this document 
provides recommendations and suggestions and does not create legal rights or impose legally binding 
requirements on EPA or the public. 

The Council for Regulatory Environmental Modeling has also developed the Models Knowledge Base — 
a Web-based inventory of information on models used in EPA — as a companion product to complement 
this document.  This inventory provides convenient access to standardized documentation on the models’ 
development, scientific basis, user requirements, evaluation studies, and application examples. 

3 




 

 

 

 

 

 
   

 
 

 
 
 

 
  

 
 

 
 

 
 

  

 
 

 
   

 

2. Modeling for Environmental Decision Support 

2.1 Why Are Models Important? 

This guidance defines a model as “a simplification of reality that is constructed to gain insights into 
select attributes of a particular physical, biological, economic, or social system.”  A model 
developer sets boundary conditions and determines which aspects of the system are to be modeled, 
which processes are important, how these processes may be represented mathematically, and what 
computational methods to use in implementing the mathematics.   Thus, models are based on simplifying 
assumptions and cannot completely replicate the complexity inherent in environmental systems.  Despite 
these limitations, models are essential for a variety of purposes in the environmental field. These 
purposes tend to fall into two categories: 

� To diagnose (i.e., assess what happened) and examine causes and precursor conditions (i.e., why it 
happened) of events that have taken place. 

� To forecast outcomes and future events (i.e., what will happen). 

Whether applied to current conditions or envisioned future circumstances, models play an important role 
in environmental management.  They are an important tool to analyze environmental and human health 
questions and characterize systems that are too complex to be addressed solely through empirical 
means.   

Models can be classified in various ways (see Appendix B) — for example, based on their conceptual 
basis and mathematical solution, the purpose for which they were developed and are applied, the domain 
or discipline to which they apply, and the level of resolution and complexity at which they operate.  Three 
categories of regulatory models have been identified based on their purpose or application (CREM 2001):  

�	 Policy analysis.  The results of policy analysis models affect national policy decisions. These models 
are used to set policy for large, multi-year programs or concepts — for example national policy on 
acid rain and phosphorus reduction in the Great Lakes.  

�	 National regulatory decision making.  These models inform national regulatory decision making 
after overall policy has been established. Examples include the use of a model to assist in 
determining federal regulation of a specific pesticide or to aid in establishing national effluent 
limitations. 

�	 Implementation applications. These models are used in situations where policies and regulations 
have already been made.  Their development and use may be driven by court-ordered schedules and 
the need for local action.    

Environmental models are one source of information for Agency decision makers who need to consider 
many competing objectives.  A number of EPA programs make decisions based on information from 
environmental modeling applications. Within the Agency: 

� Models are used to simulate many different processes, including natural (chemical, physical, and 
biological) systems, economic phenomena, and decision processes. 

� Many types of models are employed, including economic, behavioral, physical, engineering design, 
health, ecological, and fate/transport models.  

4 




 

 

 

 
 

 

  

 
 

 
 

 

 
 

� 	 The geographic scale of the problems addressed by a model can vary from national scale to an  
individual site.  Examples of different scales include: 
�  National air quality models used in decisions about emission requirements. 
�  Watershed-scale water quality models used in decisions about permit limits for point sources. 
�  Site-scale human health risk  models used in deci sions about hazardous waste cleanup 

measures. 

Box 1:  Examples of EPA Web Sites Containing Model Descriptions for Individual Programs  
 
National Environmental Research Laboratory Models: http://www.epa.gov/nerl/topics/models.html  
Atmospheric Sciences Modeling Division:  http://www.epa.gov/asmdnerl/index.html  
Office of Water’s Water Quality Modeling:  http://www.epa.gov/waterscience/wqm  
Center for Subsurface Modeling Support:  http://www.epa.gov/ada/csmos.html  
National Center for Computational Toxicology:  http://www.epa.gov/ncct  
Support Center for Regulatory Atmospheric Modeling:  http://www.epa.gov/scram001/aqmindex.htm  

Models also have useful applications outside the regulatory context.  For example, because models 
include explicit mathematical statements about system mechanics, they serve as research tools for 
exploring new scientific issues and screening tools for simplifying and/or refining existing scientific 
paradigms or software (SAB 1993a, 1989).  Models can also help users study the behavior of ecological 
systems, design field studies, interpret data, and generalize results.   

2.2 The Modeling Life-Cycle 

The process of developing and applying a model to address a specific decision making need generally 
follows the iterative progression described in Box 2 and depicted in Figure 1.  Models are used to address 
real or perceived environmental problems.  Therefore, a modeling process (i.e., model development, 
evaluation, and application described in chapters 3, 4, and 5, respectively) is initiated after the Agency 
has identified an environmental problem and determined that model results could provide useful input for 
an Agency decision.  

Problem identification will be most successful if it involves all parties who would be involved in model 
development and use (i.e., model developers, intended users, and decision makers).  At a minimum, the 
Agency should develop a relatively simple, plain English problem identification statement. 
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Box 2:  Basic Steps in the Process of Modeling for Environmental Decision Making 
(modified from Box 3-1, NRC Report on Models in Regulatory Environmental Decision Making)
 Step Modeling Issues 
Problem identification 
and specification: 
to determine the right 
decision-relevant questions 

Definition of model 
purpose  

� Goal 
� Decisions to be supported 
� Predictions to be made 

Specification of � Scale (spatial and temporal) 
and establish modeling 
objectives 

modeling context  � Application domain 
� User community 
� Required inputs 
� Desired output 
� Evaluation criteria 

Model development: to 
develop the conceptual 
model that reflects the 
underlying science of the 
processes being modeled, 

Conceptual model 
formulation 

� Assumptions (dynamic, static, stochastic, deterministic) 
� State variables represented 
� Level of process detail necessary 
� Scientific foundations 

Computational � Algorithms 
and develop the 
mathematical 
representation of that 
science and encode these 
mathematical expressions 
in a computer program 

model development  � Mathematical/computational methods 
� Inputs 
� Hardware platforms and software infrastructure 
� User interface 
� Calibration/parameter determination 
� Documentation 

Model evaluation: to test Model testing and � Theoretical corroboration 
that the model expressions revision � Model components verification 
have been encoded � Corroboration (independent data) 
correctly into the computer � Sensitivity analysis  
program and test the model � Uncertainty analysis 
outputs by comparing them � Robustness determination 
with empirical data � Comparison to evaluation criteria set during formulation 
Model application: Model use � Analysis of scenarios 
running the model and � Predictions evaluation 
analyzing its outputs to � Regulations assessment 
inform a decision � Policy analysis and evaluation 

� Model post-auditing 

6 




 

 
 

 
 
Figure 1. The Role of Modeling in the Public Policy Process. 
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3. Model Development 


Summary of Recommendations for Model Development 
�  Regulatory models should be continually evaluated as long as they are used. 
�  Communication between model developers and model users is crucial during model development. 
�  Each element of the conceptual model should be  clearly described (in words, functional expressions,  

diagrams, and graphs, as necessary), and the science behind each element should be clearly
documented. 

�  When possible, simple competing conceptual models/hypotheses should be tested. 
�  Sensitivity analysis should be used early and often. 
�  The optimal level of model complexity should be determined by making appropriate tradeoffs among  

competing objectives. 
�  Where possible, model parameters should be characterized using direct measurements of sample 

populations.  
�  All input data should meet data quality acceptance criteria in the QA project plan for modeling. 

 

3.1 Introduction 

Model development begins after problem identification — i.e., after the Agency has identified an 
environmental problem it needs to address and has determined that models may provide useful input for 
the Agency decision making needed to address the problem (see Section 2.2). In this guidance, model 
development comprises the steps involved in (1) confirming whether a model is, in fact, a useful tool to 
address the problem; what type of model would be most useful; and whether an existing model can be 
used for this purpose; as well as (2) developing an appropriate model if one does not already exist. Model 
development sets the stage for model evaluation (covered in chapter 3), an ongoing process in which the 
Agency evaluates the appropriateness of the existing or new model to help address the environmental 
problem. 

Model development can be viewed as a process with three main steps: (a) specify the environmental 
problem (or set of issues) the model is intended to address and develop the conceptual model, (b) 
evaluate or develop the model framework (develop the mathematical model), and (c) parameterize the 
model to develop the application tool.  Sections 3.2, 3.3, and 3.4 of this chapter, respectively, describe 
the various aspects and considerations involved in implementing each of these steps.  

As described below, model development is a collaborative effort involving model developers, intended 
users, and decision makers (the “project team”). The perspective and skills of each group are important to 
develop a model that will provide an appropriate, credible, and defensible basis for addressing the 
environmental issue of concern.  

A “graded approach” should be used throughout the model development process. This involves repeated 
examination of the scope, rigor, and complexity of the modeling analysis in light of the intended use of 
results, degree of confidence needed in the results and Agency resource constraints. 

8 




 

 
 

   

  
 

 
 

 
 

 
 

 
 
 

 

 
 

 
 
 

 

 
  

 

3.2 Problem Specification and Conceptual Model Development 

Problem specification, culminating in development of the conceptual model, involves an iterative, 
collaborative effort among model developers, intended users, and decision makers (the project team) to 
specify all aspects of the problem that will inform subsequent selection or development of a model 
framework.  Communication between model developers and model users is crucial to clearly establish the 
objectives of the modeling process; ambiguity at this stage can undermine the chances for success 
(Manno et al. 2008).  

During problem specification, the project team defines the regulatory or research objectives, the type and 
scope of model best suited to meet those objectives, the data criteria, the model’s domain of applicability, 
and any programmatic constraints. These considerations provide the basis for developing a conceptual 
model, which depicts or describes the most important behaviors of the system, object, or process relevant 
to the problem of interest. Problem specification and the resulting conceptual model define the modeling 
needs sufficiently that the project team can then determine whether an existing model can be used to 
meet those needs or whether a new model should be developed. 

3.2.1 Define the Objectives 

The first step in problem specification is to define the regulatory or research objectives (i.e., what 
questions the model needs to answer).  To do so, the team should develop a written statement of 
modeling objectives that includes the state variables of concern, the stressors driving those state 
variables, appropriate temporal and spatial scales, and the degree of model accuracy and precision 
needed.  

3.2.2 Determine the Type and Scope of Model Needed 

Many different types of models are available, including empirical vs.  mechanistic, static vs. dynamic, 
simulation vs. optimization, deterministic vs. stochastic, and lumped vs. distributed. The project team 
should discuss and compare alternatives with respect to their ability to meet the objectives in order to 
determine the most appropriate type of model for addressing the problem.  
 
The scope (i.e., spatial, temporal and process detail) of models that can be used for a particular 
application can range from very simple to very complex depending on the problem specification and data 
availability, among other factors.  When different types of models may be appropriate for solving different  
problems, a graded approach should be used to select or develop models that will provide the scope, 
rigor, and complexity appropriate to the intended use of and confidence needed in the results.  Section 
3.3.1 provides more information on considerations regarding model complexity.  
 
 3.2.3 Determine Data Criteria 
 
This step includes developing data quality objectives (DQOs) and specifying the acceptable range of 
uncertainty. DQOs (EPA 2000a) provide specifications for model quality and associated checks (see 
Appendix C, Box C1: Background on EPA Quality System). Well-defined DQOs guide the design of 
monitoring plans and the model development process (e.g., calibration and verification). The DQOs 
provide guidance on how to state data needs when limiting decision errors (false positives or false 

9 




 

 

 

 
 

 
 
  
 

 
  

 
 

 
  
 

 

 

 

 
 

                                                 

 

 
  

negatives) relative to a given decision.1 The DQOs should include a statement about the acceptable level 
of total uncertainty that will still enable model results to be used for the intended purpose (Appendix C, 
Box C2: Configuration Tests Specified in the QA Program). Uncertainty describes the lack of knowledge 
about models, parameters, constants, data, and beliefs.  Defining the ranges of acceptable uncertainty — 
either qualitatively or quantitatively — helps project planners generate “specifications” for quality 
assurance planning and partially determines the appropriate boundary conditions and complexity for the 
model being developed. 

3.2.4 Determine the Model’s Domain of Applicability 

To select an appropriate model, the project team must understand the model’s domain of applicability — 
i.e., the set of conditions under which use of the model is scientifically defensible and the relevant 
characteristics of the system to be modeled.  This involves identifying the environmental domain to be 
modeled and then specifying the processes and conditions within that domain, including the transport and 
transformation processes relevant to the policy/management/research objectives, the important time and 
space scales inherent in transport and transformation processes within that domain in comparison to the 
time and space scales of the problem objectives, and any peculiar conditions of the domain that will affect 
model selection or new model construction.  

3.2.5 Discuss Programmatic Constraints 

At this stage, the project team also needs to consider any factors that could constrain the modeling 
process. This discussion should include considerations of time and budget, available data or resources to 
acquire more data, legal and institutional factors, computer resource constraints, and the experience and 
expertise of the modeling staff.  

3.2.6 Develop the Conceptual Model 

A conceptual model depicts or describes the most important behaviors of the system, object, or process 
relevant to the problem of interest.  In developing the conceptual model, the model developer may 
consider literature, fieldwork, applicable anecdotal evidence, and relevant historical modeling projects.  
The developer should clearly describe (in words, functional expressions, diagrams, and/or graphs) each 
element of the conceptual model and should document the science behind each element (e.g., laboratory 
experiments, mechanistic evidence, empirical data supporting the hypothesis, peer-reviewed literature) in 
mathematical form, when possible.  To the extent feasible, the modeler should also provide information 
on assumptions, scale, feedback mechanisms, and static/dynamic behaviors.  When relevant, the 
strengths and weaknesses of each constituent hypothesis should be described. 

1 False rejection decision errors (false positives) occur when the null hypothesis (or baseline condition) is incorrectly 
rejected based on the sample data.  The decision is made assuming the alternate condition or hypothesis to be true 
when in reality it is false.  False acceptance decision errors (false negatives) occur when the null hypothesis (or 
baseline condition) cannot be rejected based on the available sample data.  The decision is made assuming the 
baseline condition is true when in reality it is false. 
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3.3 Model Framework Selection or Development  

Once the team has specified the problem and type of model needed to address the problem, the next 
step is to identify or develop a model framework that meets those specifications. A model framework is a 
formal mathematical specification of the concepts, procedures, and behaviors underlying the system, 
object, or process relevant to the problem of interest, usually translated into computer software.   

For mechanistic modeling of common environmental problems, one or more suitable model frameworks 
may exist. Many existing model frameworks in the public domain can be used in environmental 
assessments.  Several institutions, including EPA, develop and maintain these model frameworks on an 
ongoing basis. Ideally, more than one model framework will meet the project needs, and the project team 
can select the best model for the specified problem.  Questions to consider when evaluating existing 
model frameworks are described below.  

Sometimes no model frameworks are appropriate to the task, and EPA will develop a new model 
framework or modify an existing framework to include the additional capabilities needed to address the 
project needs.   

Some assessments require linking multiple model frameworks, such that the output from one model is 
used as input data to another model.  For example, air quality modeling often links meteorological, 
emissions, and air chemistry/transport models.  When employing linked models, the project team should 
evaluate each component model, as well as the full system of integrated models, at each stage of the 
model development and evaluation process. 

In all cases, the documentation for the selected model should clearly state why and how the model can 
and will be used.   

As potential model frameworks are identified or developed for addressing the problem, the project team 
will need to consider several issues, including:  

� Does sound science (including peer-reviewed theory and equations) support the underlying 
hypothesis?   

� Is the model’s complexity appropriate for the problem at hand?  
� Do the quality and quantity of data support the choice of model?   
� Does the model structure reflect all the relevant inputs described in the conceptual model? 
� Has the model code been developed?  If so, has it been verified?  

It is recommended that the evaluation process apply the principles of scientific hypothesis testing (Platt 
1964) using an iterative approach (Hilborn and Mangel 1997). If the team is evaluating multiple model 
frameworks, it may be useful to statistically compare the performance of these competing models with 
observational, field, or laboratory data (Chapter 4).   

Box 3:  Example of Model Selection Considerations: Arsenic in Drinking  Water 
(from Box 5-3 of NRC’s Models in Environmental Regulatory Decision Making) 

A major challenge for regulatory model applications is which model to use to inform the decision making process.  In  
this example, several models were available to estimate  the cancer incidence associated with different levels of  
arsenic in drinking water. These models differed according to how  age and exposure were incorporated (Morales et  
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al. 2000).  All the models assumed that the  number of cancers observed in a specific age group of a particular village  
followed a Poisson model with parameters, depending on the age and village exposure level. Linear, log, polynomial,  
and spline models for age and exposure were considered. 

These various models differed substantially  in their fitted values, especially in the critical low-dose area, which is so  
important for establishing the benchmark dose (BMD) that  is used to set a reference dose (RfD). The fitted-dose  
response model was also strongly affected by  whether Taiwanese population data  were included as a baseline  
comparison group. Depending on the particular modeling assumptions used, the estimates of the BMD and  
associated lower limit (BMDL) varied by over an order of magnitude. 

Several strategies are available for choosing among multiple  models.  One strategy is to pick the “best” model — for  
example, use one of the popular statistical goodness of fit measures, such as the Akieke (sic) information criterion  
(AIC) or the Bayesian information criterion (BIC). These approaches correspond to picking the model that maximizes  
log-likelihood, subject to a penalty function reflecting the number of model parameters, thus effectively forcing a  
trade-off between improving model fit by adding addition model parameters versus having a parsimonious  
description. In the case  of the arsenic risk  assessment, however, the noisiness of the  data meant that many  of the 
models explored by Morales et al. (2000) were relatively similar in terms of statistical goodness-of-fit criteria. In a  
follow-up paper, Morales et al. (2006) argued that it was important to address and account for the model uncertainty,  
because ignoring it would underestimate the true variability of the estimated model fit and, in turn, overestimate  
confidence in the resulting BMD and lead to “risky decisions” (Volinsky et al. 1997). 

Morales et al. suggested using Bayesian model averaging (BMA) as a tool to avoid picking one particular model. 
BMA combines over a class of suitable models. In practice, estimates based on a BMA approach tend to  approximate 
a weighted average of estimates based on individual models, with the weights reflecting how  well each individual  
model fits the observed data. More precisely, these weights can be interpreted as the probability that a particular  
model is the true model, given the observed data. Figure  2 shows the results of applying a BMA procedure to the  
arsenic data: 

�  Figure 2(a) plots individual fitted models, with the width of each plotted line  reflecting the weights.  
�  Figure 2(b) shows the estimated overall dose-response curve (solid line) fitted via BMA. The shaded area shows  

the upper and lower limits (2.5% and 97.5% tiles) based on the BMA procedure. The dotted lines show  upper  
and lower limits based on the best fitting models.  

Figure 2(b) (L30) effectively illustrates the inadequacy of standard statistical confidence intervals in characterizing  
uncertainty in  settings where there is substantial model uncertainty. The BMA limits coincide closely with the  
individual curves at the upper level of the dose-response curve where all the individual models tend to give similar  
results. 

Figure 2.  (a) Individual dose-response models, and (b) overall dose-response model fitted using the Bayesian model  
averaging approach. Source: Morales et al. 2000. 

3.3.1 Model Complexity 

During the problem specification stage, the project team will have considered the degree of complexity 
desired for the model (see Section 3.2.2). As described below, model complexity influences uncertainty. 
Models tend to uncertainty as they become increasingly simple or increasingly complex. Thus complexity 
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is an important parameter to consider when choosing among competing model frameworks or 
determining the suitability of the existing model framework to the problem of concern.  For the reasons 
described below, the optimal choice generally is a model that is no more complicated than necessary to 
inform the regulatory decision. For the same reasons, model complexity is an essential parameter to 
consider when developing a new model framework.  

Uncertainty exists when knowledge about specific factors, parameters (inputs), or models is incomplete. 
Models have two fundamental types of uncertainty: 
 
� Model framework uncertainty, which is  a function of the soundness of the model’s underlying scientific 

foundations.   
� Data uncertainty, which arises from measurement errors, analytical imprecision, and limited sample 

size during collection and treatment of the data used to characterize the model parameters.   
 
These two types of uncertainty have a reciprocal relationship, with one increasing as the other decreases. 
Thus, as illustrated in Figure 3, an optimal level of complexity (the “point of minimum uncertainty”) exists 
for every model.   

 

 

 

Total Uncertainty Point of 
Minimum 
Uncertainty 

Uncertainty 

Model Data 
Framework Uncertainty 
Uncertainty 

Model Complexity 
Figure 3. Relationship between model framework uncertainty and data uncertainty, and their 

combined effect on total model uncertainty.   
 (Adapted from Hanna 1988).   

For example, air quality modelers must sometimes compromise when choosing among the physical 
processes that will be treated explicitly in the model. If the objective is to estimate the pattern of pollutant 
concentration values near one (or several) source(s), then chemistry is typically of little importance 
because the distances between the pollutant source and receptor are generally too short for chemical 

13 




 

 

 
 

 
 
 

  

 

 

 

 

 
 

  

 
 

 
  

 

 
  

 

  

 

 

formation and destruction to greatly affect pollutant concentrations.  However, in such situations, other 
factors tend to have a significant effect and must be properly accounted for in the model. These may 
include building wakes, initial characterization of source release conditions and size, rates of diffusion of 
pollutants released as they are transported downwind, and land use effects on plume transport. 
Conversely, when the objective is to estimate pollutant concentrations further from the source, chemistry 
becomes more important because there is more time for chemical reactions to take place, and initial 
source release effects become less important because the pollutants become well-mixed as they travel 
through the atmosphere. To date, attempts to model both near-field dispersion effects and chemistry have 
been inefficient and slow on desktop computers.   

Because of these competing objectives, parsimony (economy or simplicity of assumptions) is desirable in 
a model. As Figure 3 illustrates, as models become more complex to treat more physical processes, their 
performance tends to degrade because they require more input variables, leading to greater data 
uncertainty. Because different models contain different types and ranges of uncertainty, it can useful to 
conduct sensitivity analysis early in the model development phase to identify the relative importance of 
model parameters.  Sensitivity analysis is the process of determining how changes in the model input 
values or assumptions (including boundaries and model functional form) affect the model outputs 
(Morgan and Henrion 1990). 

Model complexity can be constrained by eliminating parameters when sensitivity analyses (Chapter 
4/Appendix D) show that they do not significantly affect the outputs and when there is no process-based 
rationale for including them. However, a variable of little significance in one application of a model may be 
more important in a different application.  In past reviews of Agency models, the SAB has supported the 
general guiding principle of simplifying complex models, where possible, for the sake of transparency 
(SAB 1988), but has emphasized that care should be taken not to eliminate important parameters from 
process-based models simply because data are unavailable or difficult to obtain (SAB 1989).  In any 
case, the quality and resolution of available data will ultimately constrain the type of model that can be 
applied.  Hence, it is important to identify the existing data and and/or field collection efforts that are 
needed to adequately parameterize the model framework and support the application of a model.  The 
NRC Committee on Models in the Regulatory Decision Process recommended that models used in the 
regulatory process should be no more complicated than is necessary to inform regulatory decision and 
that it is often preferable to omit capabilities that do not substantially improve model performance (NRC 
2007).    

3.3.2 Model Coding and Verification 

Model coding translates the mathematical equations that constitute the model framework into functioning 
computer code.  Code verification ascertains that the computer code has no inherent numerical problems 
with obtaining a solution. Code verification tests whether the code performs according to its design 
specifications.  It should include an examination of the numerical technique in the computer code for 
consistency with the conceptual model and governing equations (Beck et al. 1994).  Independent testing of 
the code once it is fully developed can be useful as an additional check of integrity and quality. 

Several early steps can help minimize later programming errors and facilitate the code verification 
process. For example: 
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� Using “comment” lines to describe the purpose of each component within the code during 
development makes future revisions and improvements by different modelers and programmers more 
efficient.   

� Using a flow chart when the conceptual model is developed and before coding begins helps 
show the overall structure of the model program. This provides a simplified description of the 
calculations that will be performed in each step of the model.   

Breaking the program/model into component parts or modules is also useful for careful consideration 
of model behavior in an encapsulated way.  This allows the modeler to test the behavior of each sub-
component separately, expediting testing and increasing confidence in the program.  A module is an 
independent piece of software that forms part of one or more larger programs.  Breaking large models 
into discrete modules facilitates testing and debugging (locating/correcting errors) compared to large 
programs.  The approach also makes it easier to re-use relevant modules in future modeling projects, or 
to update, add, or remove sections of the model without altering the overall program structure. 

Use of generic algorithms for common tasks can often save time and resources, allowing efforts to 
focus on developing and improving the original aspects of a new model.  An algorithm is a precise rule (or 
set of rules) for solving some problem.  Commonly used algorithms are often published as “recipes” with 
publicly available code (e.g., Press 1992).  Developers should review existing Agency models and code 
to minimize duplication of effort.  The CREM models knowledge base, which will contain a Web-
accessible inventory of models, will provide a resource model developers can use for this purpose. 

Software engineering has evolved rapidly in recent years and continues to advance rapidly with changes 
in technology and user platforms. For example, some of the general recommendations for developing 
computer code given above do not apply to models that are developed using object-oriented platforms. 
Object-oriented platform model systems use a collection of cooperating “objects.” These objects are 
treated as instances of a class within a class hierarchy, where a class is a set of objects that share a 
common structure and behavior. The structure of a class is determined by the class variables, which 
represent the state of an object of that class; the behavior is given by the set of methods associated with 
the class (Booch 1994). When models are developed with object-oriented platforms, the user should print 
out the actual mathematical relationships the platform generates and review them as part of the code 
validation process. 

Many references on programming style and conventions provide specific, technical suggestions for 
developing and testing computer code (e.g., The Elements of Programming Style [Kernigham and 
Plaugher 1988]).  In addition, the Guidance for Quality Assurance Project Plans for Modeling (EPA 
2002b) suggests a number of practices during code verification to “check” how well it follows the 
“specifications” laid out during QA planning (Appendix C, Box C2: Configuration Tests Specified in the QA 
Program). 

3.4 Application Tool Development 

Once a model framework has been selected or developed, the modeler populates the framework with the 
specific system characteristics needed to address the problem, including geographic boundaries of the 
model domain, boundary conditions, pollution source inputs, and model parameters.  In this manner, the 
generic computational capabilities of the model framework are converted into an application tool to 
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assess a specific problem occurring at a specific location.  Model parameters are terms in the model that 
are fixed during a model run or simulation but can be changed in different runs, either to conduct 
sensitivity analysis or to perform an uncertainty analysis when probabilistic distributions are selected to 
model parameters or achieve calibration (defined below) goals.  Parameters can be quantities estimated 
from sample data that characterize statistical populations or they can be constants such as the speed of 
light and gravitational force.  Other activities at this stage of model development include creating a user 
guide for the model, assembling datasets for model input parameters, and determining hardware 
requirements. 

3.4.1 Input Data 

As mentioned above, the accuracy, variability, and precision of input data used in the model is a major 
source of uncertainty:   

� Accuracy refers to the closeness of a measured or  computed value to its “true” value (the value  
obtained with perfect information). Due to the natural heterogeneity and random variability  
(stochasticity) of many environmental systems, this “true”  value exists as a distribution rather  than a 
discrete value.   

� Variability refers to differences attributable to true heterogeneity or diversity in model parameters.  
Because of variability, the “true” value of model parameters is often a function of the degree of spatial  
and temporal aggregation.   

� Precision refers to the quality of being reproducible in outcome or performance.  With models and 
other forms of quantitative information, precision often refers to the number of decimal places to  
which a number is computed.  This is a measure of the “preciseness” or “exactness” of the model. 

 
Modelers should always select the most appropriate data — as defined by QA protocols for field 
sampling, data collection, and analysis (EPA 2002c, 2002d, 2000b) — for use in modeling analyses. 
Whenever possible, all parameters should be directly measured in the system of interest. 

Box 4:  Comprehensive Everglades Restoration Plan: An Example of  the Interdependence of Models and  
Data from Measurements  
(from NRC’s Models in Environmental Regulatory Decision Making) 

The restoration of the Florida Everglades is the largest ecosystem restoration ever planned in terms of geographical  
extent and number of individual components.  The NRC Committee on Restoration of the Greater Everglades
Ecosystem, which was charged with  providing scientific advice on this effort, describes the role that modeling and  
measurements should play  in implementing an adaptive approach to restoration (NRC 2003).  Under the committee’s  
vision, monitoring of hydrological and ecological performance measures should be integrated  with mechanistic
modeling and experimentation to better understand how the Everglades function and how  the system will respond to  
management practices and external stresses.  Because individual components of the restoration plan will be
staggered in time, the early components can provide scientific feedback to guide and refine implementation of later  
components of the plan. 

 

 

 

The NRC Committee on Models in the Regulatory Decision Process recommends that: “…using adapting 
strategies to coordinate data collection and modeling should be a priority for decision makers and those 
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responsible for regulatory model development and application.  The interdependence of measurements 
and modeling needs to be fully considered as early as the conceptual model development phase.”  

3.4.2 Model Calibration 

Some models are “calibrated” to set parameters.  Appendix C provides guidance on model calibration as 
a QA project plan element (see Box C3:  Quality Assurance Planning Suggestions for Model Calibration 
Activities). In this guidance, calibration is defined as the process of adjusting model parameters within 
physically defensible ranges until the resulting predictions give the best possible fit to the observed data 
(EPA 1994b). In some disciplines, calibration is also referred to as parameter estimation (Beck et al. 
1994). 

Most process-oriented environmental models are under-determined; that is, they contain more uncertain 
parameters than state variables that can be used to perform a calibration. Sensitivity analysis can be 
used to identify key processes influencing the state variables.  Sometimes the rate constant for a key 
process can be measured directly — for example, measuring the rate of photosynthesis (a process) in a 
lake in addition to the phytoplankton biomass (a state variable).  Direct measurement of rate parameters 
can reduce model uncertainty. 

When a calibration database has been developed and improved over time, the initial adjustments and 
estimates may need period recalibration.  When data for quantifying one or more parameter values are 
limited, calibration exercises can be used to find solutions that result in the ”best fit” of the model. 
However, these solutions will not provide meaningful information unless they are based on measured 
physically defensible ranges.  Therefore, this type of calibration should be undertaken with caution. 

Because of these concerns, the use of calibration to improve model performance varies among EPA 
offices and regions.  For a particular model, the appropriateness of calibration may be a function of the 
modeling activities undertaken.  For example, the Office of Water’s standard practice is to calibrate well-
established model frameworks such as CE-QUAL-W2 (a model for predicting temperature fluctuations in 
rivers) to a specific system (e.g., the Snake River).  This calibration generates a site-specific tool (e.g., the 
“Snake River Temperature” model).   In contrast, the Office of Air and Radiation (OAR) more commonly 
uses model frameworks and models that do not need site-specific adjustments.  For example, certain 
types of air models (e.g., gaussian plume) are parameterized for a range of meteorological conditions, 
and thus do not need to be “recalibrated” for different geographic locations (assuming the range of 
conditions is appropriate for the model).  OAR also seeks to avoid artificial improvements in model 
performance by adjusting model inputs outside the ranges supported by the empirical databases. These 
practices prompted OAR to issue the following statement on model calibration in their Guideline on Air 
Quality Models (EPA 2003b): 

Calibration of models is not common practice and is subject to much error and
 
misunderstanding. There have been attempts by some to compare model estimates and
 

measurements on an event-by-event basis and then calibrate a model with results of that 

comparison. This approach is severely limited by uncertainties in both source and 

meteorological data and therefore it is difficult to precisely estimate the concentration at
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an exact location for a specific increment of time.  Such uncertainties make calibration of 
models of questionable benefit. Therefore, model calibration is unacceptable. 

In general, however, models benefit from thoughtful adaptation that will enable them to respond 
adequately to the specifics of each regulatory problem to which they are applied. 
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4. Model Evaluation
 

Summary of Recommendations for Model Evaluation 
�  Model evaluation provides  information to determine when a model, despite its uncertainties, can be 

appropriately used to inform a decision.    
�  Model evaluation addresses the soundness of the science underlying a model, the quality and 

quantity of available data, the degree of correspondence with observed conditions, and the 
appropriateness of a model for a given application.   

�  Recommended components of the evaluation process include: (a) credible, objective peer review; (b) 
QA project planning and data quality assessment; (c) qualitative and/or quantitative model 
corroboration; and (d) sensitivity and uncertainty analyses.   

�  Quality is an attribute of models that is meaningful only within the context of a specific model 
application.  Determining whether a model serves its intended purpose involves in-depth discussions 
between model developers and the users responsible for applying for the model to a particular 
problem.  

�  Information gathered during model evaluation allows the decision maker to be better positioned to 
formulate decisions and policies that take into account all relevant issues and concerns. 

4.1 Introduction  

Models will always be constrained by computational limitations, assumptions  and  knowledge  
gaps.   They can best be viewed as tools to  help inform decisions rather than  as machines to  
generate truth or make decisions.  Scientific advances will never make it possible to build a 
perfect model that accounts for every aspect of reality or to prove that a given model is correct in  
all aspects for a particular  regulatory application.  These characteristics…suggest that model  
evaluation be viewed as an integral and ongoing part of the life cycle of a model, from problem  
formulation and model conceptualization to the development and application of a computational 
tool.  

— NRC Committee on Models in the Regulatory Decision Process (NRC 2007)  

The natural complexity of environmental systems makes it difficult to mathematically describe all relevant 
processes, including all the intrinsic mechanisms that govern their behavior.  Thus, policy makers often 
rely on models as tools to approximate reality when making decisions that affect environmental systems. 
The challenge facing model developers and users is determining when a model, despite its uncertainties, 
can be appropriately used to inform a decision. Model evaluation is the process used to make this 
determination.  In this guidance, model evaluation is defined as the process used to generate information 
to determine whether a model and its analytical results are of a quality sufficient to serve as the basis for 
a decision. Model evaluation is conducted over the life cycle of the project, from development through 
application. 
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Box 5: Model Evaluation Versus Validation Versus Verification 

Model evaluation should not be confused with model validation. Different disciplines assign different meanings to  
these terms and they  are often confused. For example, Suter (1993) found that among models used for risk
assessments, misconception often arises in the form of the question “Is the model valid?” and statements such as  
“No model should be used  unless it has been validated.” Suter further points out that “validated” in this context means  
(a) proven to correspond exactly to reality or (b) demonstrated through experimental tests to make consistently  
accurate predictions.  

Because every model contains simplifications, predictions derived from a model can never be completely  accurate  
and a model can never correspond exactly to reality.  In addition, “validated models” (e.g., those that have been  
shown to correspond to field data) do not necessarily  generate accurate predictions of reality for multiple applications  
(Beck 2002a). Thus, some researchers assert that no model is  ever truly “validated”; models can only be invalidated  
for a specific application (Oreskes et al. 1994).  Accordingly, this guidance focuses on process and techniques for  
model evaluation rather than model validation or invalidation.   

“Verification”  is another term commonly applied to the evaluation process.  However, in this guidance and elsewhere, 
model verification typically refers to model code verification as defined in the model development section.  For 
example, the NRC Committee on Models in the Regulatory Decision Process (NRC 2007) provides the following  
definition: 

Verification refers to activities that are designed to confirm that the mathematical framework 
embodied in the module is correct and that the computer code for a module is operating according 
to its intended design so that the results obtained compare favorably with those obtained using 
known analytical solutions or numerical solutions from simulators based on similar or identical 
mathematical frameworks.  

In simple terms, model evaluation provides information to help answer four main questions (Beck 2002b): 

1. 	 How have the principles of sound science been addressed during model development?  
2. 	 How is the choice of model supported by the quantity and quality of available data? 
3. 	 How closely does the model approximate the real system of interest?  
4. 	 How does the model perform the specified task while meeting the objectives set by QA project 

planning? 

These four factors address two aspects of model quality. The first factor focuses on the intrinsic 
mechanisms and generic properties of a model, regardless of the particular task to which it is applied. In 
contrast, the latter three factors are evaluated in the context of the use of a model within a specific set of 
conditions. Hence, it follows that model quality is an attribute that is meaningful only within the context of 
a specific model application. A model's quality to support a decision becomes known when information is 
available to assess these factors.   

The NRC committee recommends that evaluation of a regulatory model continue throughout the life of a 
model and that an evaluation plan could: 

� Describe the model and its intended uses. 

� Describe the relationship of the model to data, including the data for both inputs and corroboration. 
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�  Describe how such data and other sources of information will be used to assess the ability of the 
model to meet its intended task. 

�  Describe all the elements of the evaluation plan by using an outline or diagram that shows how the 
elements relate to the model’s life cycle. 

� 	 Describe the factors or events that might trigger the need for major model revisions or the 
circumstances that might prompt users to seek an alternative model.  These can be fairly broad and 
qualitative. 

� 	 Identify the responsibilities, accountabilities, and resources needed to ensure implementation of the 
evaluation plan. 

 
As stated above, the goal of model evaluation is to ensure model quality. At EPA, quality is defined by the 
Information Quality Guidelines (IQGs) (EPA 2002a).  The IQGs apply to all information that EPA 
disseminates, including models, information from  models, and input data (see Appendix C, Box C4: 
Definition of Quality). According to the IQGs, quality has three major components: integrity, utility, and  
objectivity.  This chapter focuses on addressing the four questions listed above by evaluating the third  
component, objectivity — specifically, how to ensure the objectivity of information from models by 
considering their accuracy, bias, and reliability. 
 
� 	 Accuracy, as described in Section 2.4, is the closeness of a measured or computed value to its “true”  

value, where the “true” value is obtained with perfect information.   
� 	 Bias describes any systematic deviation between a measured (i.e., observed) or computed value and 

its “true” value.  Bias is affected by faulty  instrument calibration and other measurement errors, 
systematic errors during data collection, and sampling errors such as incomplete spatial 
randomization during the design of sampling programs. 

� 	 Reliability is the confidence that (potential) users have in a model and its outputs such that they are 
willing to use the model and accept its results (Sargent 2000).  Specifically, reliability is a function of 
the model’s performance record and its conformance to best available, practicable science. 

 
This chapter  describes principles, tools, and considerations for model evaluation throughout all stages of 
development and application. Section 4.2 presents a variety of qualitative and quantitative best practices 
for evaluating models. Section 4.3 discusses special considerations for evaluating proprietary models. 
Section 4.4 explains why retrospective analysis of models, conducted after a model has been applied, 
can be important to improve individual models and regulatory policies and to systematically enhance the 
overall modeling field. Finally, Section 4.5 describes  how the evaluation process culminates in a decision 
whether to apply the model to decision making. Section 4.6 reviews the key recommendations from this 
chapter.   

4.2 Best Practices for Model Evaluation 

The four questions listed above address the soundness of the science underlying a model, the quality and 
quantity of available data, the degree of correspondence with observed conditions, and the 
appropriateness of a model for a given application.  This guidance describes several “tools” or best 
practices to address these questions: peer review of models; QA project planning, including data quality 
assessment; model corroboration (qualitative and/or quantitative evaluation of a model’s accuracy and 
predictive capabilities); and sensitivity and uncertainty analysis.  These tools and practices include both 
qualitative and quantitative techniques:  
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� Qualitative assessments: Some of the uncertainty in model predictions may arise from sources 
whose uncertainty cannot be quantified.  Examples are uncertainties about the theory underlying the 
model, the manner in which that theory is mathematically expressed to represent the environmental 
components, and the theory being modeled.  Subjective evaluation of experts may be needed to 
determine appropriate values for model parameters and inputs that cannot be directly observed or 
measured (e.g., air emissions estimates).  Qualitative assessments are needed for these sources of 
uncertainty. These assessments may involve expert elicitation regarding the system’s behavior and 
comparison with model forecasts. 

� Quantitative assessments:  The uncertainty in some sources — such as some model parameters and 
some input data — can be estimated through quantitative assessments involving statistical 
uncertainty and sensitivity analyses.  These types of analyses can also be used to quantitatively 
describe how model estimates of current conditions may be expected to differ from comparable field 
observations.  However, since model predictions are not directly observed, special care is needed 
when quantitatively comparing model predictions with field data.   

As discussed previously, model evaluation is an iterative process.  Hence, these tools and techniques 
may be effectively applied throughout model development, testing, and application and should not be 
interpreted as sequential steps for model evaluation.  

Model evaluation should always be conducted using a graded approach that is adequate and appropriate 
to the decision at hand (EPA 2001, 2002b).  This approach recognizes that model evaluation can be 
modified to the circumstances of the problem at hand and that programmatic requirements are varied. 
For example, a screening model (a type of model designed to provide a “conservative” or risk-averse 
answer) that is used for risk management should undergo rigorous evaluation to avoid false negatives, 
while still not imposing unreasonable data-generation burdens (false positives) on the regulated 
community.  Ideally, decision makers and modeling staff work together at the onset of new projects to 
identify the appropriate degree of model evaluation (see Section 3.1). 

External circumstances can affect the rigor required in model evaluation. For example, when the likely 
result of modeling will be costly control strategies and associated controversy, more detailed model 
evaluation may be necessary.  In these cases, many aspects of the modeling may come under close 
scrutiny, and the modeler must document the findings of the model evaluation process and be prepared 
to answer questions that will arise about the model.  A deeper level of model evaluation may also be 
appropriate when modeling unique or extreme situations that have not been previously encountered.   

Finally, as noted earlier, some assessments require the use of multiple, linked models.  This linkage has 
implications for assessing uncertainty and applying the system of models. Each component model as well 
as the full system of integrated models must be evaluated.   

Sections 4.2.1 and 4.2.2, on peer review of models and quality assurance protocols for input data, 
respectively, are drawn from existing guidance.  Section 4.2.3, on model corroboration activities and the 
use of sensitivity and uncertainty analysis, provides new guidance for model evaluation (along with 
Appendix D). 
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Box 6:  Examples of Life Cycle Model Evaluation  
(from Box 4-5 in NRC’s Models in Environmental Regulatory Decision Making) 

The value in evaluating a model from the conceptual stage through the use stage is illustrated in a multi-year project   
conducted by the Organization for Economic Cooperation and Development (OECD). The project sought to develop a  
screening model that could be used to assess the persistence and long-range transport potential of chemicals. To  
ensure its effectiveness, the screening model needed to be a consensus model that had been evaluated against a  
broad set of available models and data.  

This project began at a 2001  workshop to set model performance and evaluation goals that would provide the  
foundation for  subsequent model selection  and development (OECD 2002). OECD then established an expert group 
in 2002. This group began its work by developing and publishing a guidance document on using multimedia models  
to estimate environmental persistence and long-range transport. From 2003 to 2004, the group compared and  
assessed the performance of nine available multimedia fate  and transport models (Fenner et al. 2005; Klasmeier et 
al. 2006). The group then developed a parsimonious consensus model representing the minimum set of key 
components identified in the model comparison. They convened three international workshops to disseminate this  
consensus model and provide an ongoing model evaluation forum (Scheringer et al. 2006).  

In this example, more than half the total effort was invested in the conceptual and model formulation stages, and  
much of the effort focused on performance evaluation. The group recognized that each model’s life cycle is different,  
but noted that attention should be  given to developing consensus-based approaches in the model concept and  
formulation stages. Conducting concurrent evaluations at these stages in this setting resulted in a high  degree of buy-
in from the various modeling groups. 

4.2.1 Scientific Peer Review 

Peer review provides the main mechanism for independent evaluation and review of environmental 
models used by the Agency.  Peer review provides an independent, expert review of the evaluation in 
Section 4.1; therefore, its purpose is two-fold: 

� To evaluate whether the assumptions, methods, and conclusions derived from environmental models 
are based on sound scientific principles.   

� To check the scientific appropriateness of a model for informing a specific regulatory decision.  (The 
latter objective is particularly important for secondary applications of existing models.) 

Information from peer reviews is also helpful for choosing among multiple competing models for a specific 
regulatory application.  Finally, peer review is useful to identify the limitations of existing models. Peer 
review is not a mechanism to comment on the regulatory decisions or policies that are informed by 
models (EPA 2000c).   

Peer review charge questions and corresponding records for peer reviewers to answer those questions 
should be incorporated into the quality assurance project plan, developed during assessment planning 
(see Section 4.2.2, below). For example, peer reviews may focus on whether a model meets the 
objectives or specifications that were set as part of the quality assurance plan (see EPA 2002b) (see 
Section 3.1).    
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All models that inform significant2 regulatory decisions are candidates for peer review (EPA 2000c, 1993) 

for several reasons: 


� Model results will be used as a basis for major regulatory or policy/guidance decision making. 

� These decisions likely involve significant investment of Agency resources. 

� These decisions may have inter-Agency or cross-agency implications/applicability. 


Existing guidance recommends that a new model should be scientifically peer-reviewed prior to its first 


application; for subsequent applications, the program manager should consider the scientific/technical
 
complexity and/or the novelty of the particular circumstances to determine whether additional peer review 

is needed (EPA 1993).  To conserve resources, peer review of “similar” applications should be avoided.   


Models used for secondary applications (existing EPA models or proprietary models) will generally 

undergo a different type of evaluation than those developed with a specific regulatory information need in 

mind. Specifically, these reviews may deal more with uncertainty about the appropriate application of a
 
model to a specific set of conditions than with the science underlying the model framework.  For example,
 
a project team decides to assess a water quality problem using WASP, a well-established water quality
 

model framework.  The project team determines that peer review of the model framework itself is not 

necessary, and the team instead conducts a peer review on their specific application of the WASP 

framework.
 

The following aspects of a model should be peer-reviewed to establish scientific credibility (SAB 1993a,
 
EPA 1993): 


� Appropriateness of input data. 

� Appropriateness of boundary condition specifications. 

� Documentation of inputs and assumptions. 

� Applicability and appropriateness of selected parameter values. 

� Documentation and justification for adjusting model inputs to improve model performance
 

(calibration). 
� Model application with respect to the range of its validity. 
� Supporting empirical data that strengthen or contradict the conclusions that are based on model 

results.  

To be most effective and maximize its value, external peer review should begin as early in the model 
development phase as possible (EPA 2000b).  Because peer review involves significant time and 
resources, these allocations must be incorporated into components of the project planning and any 

2 Executive Order 12866 (58 FR 51735) requires federal agencies to determine whether a regulatory action is 
“significant” and therefore, subject to the requirements of the Executive Order, including review by the Office of 
Management and Budget.    The Order defines “significant regulatory action” as one “that is likely to result in a rule 
that may: (1) Have an annual effect on the economy of $100 million or more or adversely affect in a material way 
the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or 
State, local, or tribal governments or communities; (2) Create a serious inconsistency or otherwise interfere with an 
action taken or planned by another agency; (3) Materially alter the budgetary impacts of entitlements, grants, user 
fees, or loan programs or the rights and obligations of recipients thereof; or (4) Raise novel legal or policy issues 
arising out of legal mandates, the President’s priorities, or the principles set forth in [the] Order.”  Section 2(f). 
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related contracts. Peer review in the early stages of model development can help evaluate the 
conceptual basis of models and potentially save time by redirecting misguided initiatives, identifying 
alternative approaches, or providing strong technical support for a potentially controversial position (SAB 
1993a, EPA 1993). Peer review in the later stages of model development is useful as an independent 
external review of model code (i.e., model verification).  External peer review of the applicability of a 
model to a particular set of conditions should be considered well in advance of any decision making, as it 
helps avoid inappropriate applications of a model for specific regulatory purposes (EPA 1993). 

The peer review logistics are left to the discretion of the managers responsible for applying the model 
results to decision making.  Mechanisms for accomplishing external peer review include (but are not 
limited to): 

� Using an ad hoc panel of scientists.3 

� Using an established external peer review mechanism such as the SAB  
� Holding a technical workshop.4 

Several sources provide guidance for determining the qualifications and number of reviewers needed for 
a given modeling project (SAB 1993a; EPA 2000c, 1993, 1994a). Key aspects are summarized in 
Appendix D of this guidance.   

4.2.2 Quality Assurance Project Planning and Data Quality Assessment 

Like peer review, data quality assessment addresses whether a model has been developed according to 
the principles of sound science.  While some variability in data is unavoidable (see Section 4.2.3.1), 
adhering to the tenets of data quality assessment described in other Agency guidance5 (Appendix D, Box 
D2: Quality Assurance Planning and Data Acceptance Criteria) helps minimize data uncertainty.   
 
Well-executed QA project planning also helps ensure that a model performs the specified task, which  
addresses the fourth model evaluation question posed in Section 4.1.  As discussed above, evaluating 
the degree to which a modeling project has met QA objectives is often a function of the external peer 
review process.  The Guidance for Quality Assurance Project Plans for Modeling (EPA 2002b) provides  
general information about how to document quality assurance planning for modeling (e.g., specifications  
                                                 
3 The formation and use of an  ad hoc panel  of peer reviewers may be subject to the Federal Advisory Committee Act  
(FACA).  Compliance with FACA’s requirements is summarized in Chapter Two of the Peer Review Handbook, 
“Planning a Peer Review” (EPA 2000c).  Guidance on compliance with FACA may be sought from the Office of 
Cooperative Environmental Management.  Legal questions regarding  FACA may be addressed to the Cross-Cutting  
Issues Law Office in the Office of General Counsel.   
4 Note that a technical  workshop  held  for peer  review  purposes is not subject to FACA  if the reviewers provide 
individual opinions. [Note that there is  no “one time meeting” exemption from FACA.  The courts  have  held that  
even a single meeting can be subject to  FACA.]    An attempt to obtain group advice, whether it be consensus or  
majority-minority views, likely would trigger FACA requirements. 
5 Other guidance that can  help ensure the quality of data used in modeling projects includes: 

•	  Guidance for the Data  Quality Objectives Process, a systematic planning process for environmental data  
collection (EPA 2000a). 

•	  Guidance on Choosing a Sampling Design for Environmental Data Collection, on  applying statistical  
sampling designs to environmental applications (EPA  2002c).     

•	  Guidance for Data  Quality Assessment: Practical Methods for Data Analysis, to evaluate the extent to  
which data can be used  for a specific purpose (EPA  2000b).  

25 




 

 
 

 

 

 

 

 
 

  

 
 

 
  

 

 

 
 
 

 
 

 
 

 
  

  

  

 
 

 

or assessment criteria development, assessments of various stages of the modeling process; reports to 
management as feedback for corrective action; and finally the process for acceptance, rejection, or 
qualification of the output for use) to conform with EPA policy and acquisition regulations.  Data quality 
assessments are a key component of the QA plan for models.   

Both the quality and quantity (representativeness) of supporting data used to parameterize and (when 
available) corroborate models should be assessed during all relevant stages of a modeling project. Such 
assessments are needed to evaluate whether the available data are sufficient to support the choice of the 
model to be applied (question 2, Section 4.1), and to ensure that the data are sufficiently representative of 
the true system being modeled to provide meaningful comparison to observational data (question 3, 
Section 4.1).   

4.2.3 Corroboration, Sensitivity Analysis, and Uncertainty Analysis 

The question “How closely does the model approximate the real system of interest?” is unlikely to have a 
simple answer.  In general, answering this question is not simply a matter of comparing model results and 
empirical data.  As noted in Section 3.1, when developing and using an environmental model, modelers 
and decision makers should consider what degree of uncertainty is acceptable within the context of a 
specific model application. To do this, they will need to understand the uncertainties underlying the 
model. This section discusses three approaches to gaining this understanding:  

� Model corroboration (Section 4.2.3.2), which includes all quantitative and qualitative methods for 
evaluating the degree to which a model corresponds to reality.   

� Sensitivity analysis (Section 4.2.3.3), which involves studying how changes in a model’s input values 
or assumptions affect its output or response. 

� Uncertainty analysis (Section 4.2.3.3), which investigates how a model might be affected by the lack 
of knowledge about a certain population or the real value of model parameters.    

Where practical, the recommended analyses should be conducted and their results reported in the 
documentation supporting the model.  Section 4.2.3.1 describes and defines the various types of 
uncertainty, and associated concepts, inherent in the modeling process that model corroboration and 
sensitivity and uncertainty analysis can help assess. 

4.2.3.1 Types of Uncertainty 

Uncertainties are inherent in all aspects of the modeling process. Identifying those uncertainties that 
significantly influence model outcomes (either qualitatively or quantitatively) and communicating their 
importance is key to successfully integrating information from models into the decision making process. 
As defined in Chapter 3, uncertainty is the term used in this guidance to describe incomplete knowledge 
about specific factors, parameters (inputs), or models.  For organizational simplicity, uncertainties that 
affect model quality are categorized in this guidance as:  

� Model framework uncertainty, resulting from incomplete knowledge about factors that control the 
behavior of the system being modeled; limitations in spatial or temporal resolution; and simplifications 
of the system. 
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�  Model input uncertainty, resulting from data measurement errors, inconsistencies between 
measured values and those used by the model (e.g., in their level of aggregation/averaging), and  
parameter value uncertainty.  

�  Model niche uncertainty, resulting from the use of a model outside the system for which it was 
originally developed and/or developing a larger model from several existing models with different  
spatial or temporal scales.   

 
 

 

 
 

 

 
 

 

 

Box 7:  Example of Model Input Uncertainty  

The NRC’s Models in Environmental Regulatory Decision Making  provides a detailed example, summarized below, of  
the effect of model input uncertainty  on policy decisions.  

The formation of ozone in the lower atmosphere (troposphere) is an exceedingly complex chemical process that
involves the interaction of oxides of nitrogen (NOx), volatile organic compounds (VOCs), sunlight, and dynamic
atmospheric processes.  The basic chemistry of ozone formation was known in the early 1960s (Leighton 1961). 
Reduction of ozone concentrations generally requires controlling either or both NOx and VOC emissions.  Due to the  
nonlinearity of atmospheric chemistry,  selection of the emission-control strategy traditionally relied on air quality
models. 

One of the first attempts to include the complexity  of atmospheric ozone chemistry in the decision making process 
was a simple observation-based model, the  so-called Appendix J curve (36 Fed. Reg. 8166 [1971]).  The curve was  
used to indicate the percentage VOC emission reduction required to attain the ozone standard in  an urban area
based on  peak concentration of photochemical oxidants observed in that area.  Reliable NOx data were virtually
nonexistent at the time; Appendix J was based on data from measurements of ozone and VOC concentrations from 
six U.S. cities.   The Appendix J curve was based on the  hypothesis that reducing VOC emissions was the most
effective emission-control path, and this conceptual model helped define legislative mandates enacted by  Congress  
that emphasized controlling these emissions.  

The choice in the 1970s to concentrate on VOC controls  was supported by early results from models.  Though new  
results in the 1980s showed higher-than-expected biogenic VOC emissions, EPA continued to emphasize VOC
controls, in part because the schedule that Congress and EPA set for attaining the ozone ambient air quality
standards was not conducive to reflecting on the basic elements of the science (Dennis 2002). 

VOC reductions from the early  1970s to the early  1990s had little effect on ozone concentrations.  Regional ozone  
models developed in the 1980s and 1990s suggested that controlling NOx emissions was necessary in addition  to, or  
instead of, controlling VOCs to reduce ozone concentrations (NRC 1991).  The shift in the 1990s toward regulatory  
activities focusing on NOx controls was partly due to the realization that historical estimates of emissions and the  
effectiveness of various control strategies in reducing emissions were not accurate.  In other words, ozone
concentrations  had  not been reduced as much as hoped over the past three decades, in part because emissions of 
some pollutants were much higher than originally  estimated.   

Regulations may  go forward before science and models are perfected because of the desire to mitigate the potential  
harm from environmental hazards.  In the case of ozone modeling, the model inputs (emissions inventories in this  
case) are often more important than the model science (description of atmospheric transport and chemistry in this  
case) and require as careful an evaluation as the evaluation of the model.  These factors point to the potential
synergistic role that measurements play in model development and application. 

In reality, all three categories are interrelated.  Uncertainty in the underlying model structure or model 
framework uncertainty is the result of incomplete scientific data or lack of knowledge about the factors 
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that control the behavior of the system being modeled.  Model framework uncertainty can also be the 
result of simplifications needed to translate the conceptual model into mathematical terms as described in 
Section 3.3. In the scientific literature, this type of uncertainty is also referred to as structural error (Beck 
1987), conceptual errors (Konikow and Bredehoeft 1992), uncertainties in the conceptual model (Usunoff 
et al. 1992), or model error/uncertainty (EPA 1997; Luis and McLaughlin 1992).  Structural error relates to 
the mathematical construction of the algorithms that make up a model, while the conceptual model refers 
to the science underlying a model’s governing equations.  The terms “model error” and “model 
uncertainty” are both generally synonymous with model framework uncertainty.   

Many models are developed iteratively to update their underlying science and resolve existing model 
framework uncertainty as new information becomes available.  Models with long lives may undergo 
important changes from version to version.  The MOBILE model for estimating atmospheric vehicle 
emissions, the CMAQ (Community Multi-scale Air Quality) model, and the QUAL2 water quality models 
are examples of models that have had multiple versions and major scientific modifications and extensions 
in over two decades of their existence (Scheffe and Morris 1993; Barnwell et al. 2004; EPA 1999c, as 
cited in NRC 2007).   

When an appropriate model framework has been developed, the model itself may still be highly uncertain 
if the input data or database used to construct the application tool is not of sufficient quality.  The quality 
of empirical data used for both model parameterization and corroboration tests is affected by both 
uncertainty and variability. This guidance uses the term “data uncertainty” to refer to the uncertainty 
caused by measurement errors, analytical imprecision, and limited sample sizes during data collection 
and treatment.   

In contrast to data uncertainty, variability results from the inherent randomness of certain parameters, 
which in turn results from the heterogeneity and diversity in environmental processes.  Examples of 
variability include fluctuations in ecological conditions, differences in habitat, and genetic variances 
among populations (EPA 1997).  Variability in model parameters is largely dependent on the extent to 
which input data have been aggregated (both spatially and temporally).  Data uncertainty is sometimes 
referred to as reducible uncertainty because it can be minimized with further study (EPA 1997). 
Accordingly, variability is referred to as irreducible because it can be better characterized and 
represented but not reduced with further study (EPA 1997).  

A model’s application niche is the set of conditions under which use of the model is scientifically 
defensible (EPA 1994b). Application niche uncertainty is therefore a function of the appropriateness of a 
model for use under a specific set of conditions.  Application niche uncertainty is particularly important 
when (a) choosing among existing models for an application that lies outside the system for which the 
models were originally developed and/or (b) developing a larger model from several existing models with 
different spatial or temporal scales (Levins 1992).    

The SAB’s review of MMSOILS (Multimedia Contaminant Fate, Transport and Exposure Model) provides 
a good example of application niche uncertainty. The SAB questioned the adequacy of using a screening-
level model to characterize situations where there is substantial subsurface heterogeneity or where non-
aqueous phase contaminants are present (conditions differ from default values) (SAB 1993b).  The SAB 
considered the MMSOILS model acceptable within its original application niche, but unsuitable for more 
heterogeneous conditions. 
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4.2.3.2 Model Corroboration  

The interdependence of models and measurements is complex and iterative for several reasons. 
Measurements help to provide the conceptual basis of a model and inform model development, 
including parameter estimation.  Measurements are also a critical tool for corroborating model 
results.  Once developed, models can derive priorities for measurements that ultimately get used 
in modifying existing models or in developing new ones.  Measurement and model activities are 
often conducted in isolation…Although environmental data systems serve a range of purposes, 
including compliance assessment, monitoring of trends in indicators, and basic research 
performance, the importance of models in the regulatory process requires measurements and 
models to be better integrated.  Adaptive strategies that rely on iterations of measurements and 
modeling, such as those discussed in the 2003 NRC report titled Adaptive Monitoring and 
Assessment for the Comprehensive Everglades Restoration Plan, provide examples of how 
improved coordination might be achieved. 

— NRC Committee on Models in the Regulatory Decision Process (NRC 2007) 

Model corroboration includes all quantitative and qualitative methods for evaluating the degree to which a 
model corresponds to reality. The rigor of these methods varies depending on the type and purpose of 
the model application.  Quantitative model corroboration uses statistics to estimate how closely the model 
results match measurements made in the real system.  Qualitative corroboration activities may include 
expert elicitation to obtain beliefs about a system’s behavior in a data-poor situation.  These corroboration 
activities may move model forecasts toward consensus.   

For newly developed model frameworks or untested mathematical processes, formal corroboration 
procedures may be appropriate.  Formal corroboration may involve formulation of hypothesis tests for 
model acceptance, tests on datasets independent of the calibration dataset, and quantitative testing 
criteria. In many cases, collecting independent datasets for formal model corroboration is extremely 
costly or otherwise unfeasible. In such circumstances, model evaluation may be appropriately conducted 
using a combination of other evaluation tools discussed in this section.   

Robustness is the capacity of a model to perform equally well across the full range of environmental 
conditions for which it was designed (Reckhow 1994; Borsuk et al. 2002).  The degree of similarity among 
datasets available for calibration and corroboration provides insight into a model’s robustness.  For 
example, if the dataset used to corroborate a model is identical or statistically similar to the dataset used 
to calibrate the model, then the corroboration exercise has provided neither an independent measure of 
the model’s performance nor insight into the model’s robustness. Conversely, when corroboration data 
are significantly different from calibration data, the corroboration exercise provides a measure of both 
model performance and robustness.   

Quantitative model corroboration methods are recommended for choosing among multiple models that 
are available for the same application. In such cases, models may be ranked on the basis of their 
statistical performance in comparison to the observational data (e.g., EPA 1992). EPA’s Office of Air and 
Radiation evaluates models in this manner. When a single model is found to perform better than others in 
a given category, OAR recommends it in the Guidelines on Air Quality Models as a preferred model for 
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application in that category (EPA 2003a). If models perform similarly, then the preferred model is selected 
based on other factors,  such as past use, public  familiarity, cost or resource requirements, and
availability. 

 

 

 

 

 

 

 

 
 

 

 
 

Box 8:  Example: Comparing Results from Models of Varying Complexity   
(From Box 5-4 in NRC’s Models in Environmental Regulatory Decision Making) 

The Clean Air  Mercury Rule6 requires industry to reduce mercury emissions from coal-fired power plants. A potential  
benefit is the reduced human exposure and related health impacts from methylmercury that may result from reduced  
concentrations of this toxin in fish. Many  challenges and uncertainties affect assessment of this benefit. In its
assessment of the benefits and costs of this rule, EPA used  multiple models to examine how changes in atmospheric  
deposition would affect mercury concentrations in fish, and applied the models to assess some of the uncertainties  
associated with the model results (EPA 2005). 

EPA based its national-scale benefits assessment on results from the mercury maps (MMaps) model. This model
assumes a linear, steady-state relationship between atmospheric deposition of mercury  and mercury concentrations  
in fish, and thus assumes that a 50% reduction in mercury deposition rates results in a 50% decrease in fish mercury 
concentrations. In addition, MMaps assumes instantaneous  adjustment of aquatic systems and their ecosystems to  
changes in deposition — that is, no time lag in the conversion of mercury to methylmercury and its bioaccumulation in  
fish. MMaps also does not deal with sources of mercury  other than those from atmospheric deposition. Despite those  
limitations, the Agency concluded that no other available model was capable of performing a national-scale
assessment. 

To further investigate fish mercury concentrations and to assess the effects of MMaps’ assumptions, EPA applied  
more detailed models, including the spreadsheet-based ecological risk assessment for the fate of mercury (SERAFM)  
model, to five well-characterized ecosystems. Unlike the steady-state MMaps model, SERAFM is a dynamic model  
which calculates the temporal response of mercury concentrations in fish tissues to changes in mercury loading. It 
includes multiple land-use types for representing watershed loadings of mercury through soil erosion and runoff.
SERAFM partitions mercury  among multiple compartments and phases, including aqueous phase, abiotic participles  
(for example,  silts), and biotic particles (for example, phytoplankton). Comparisons of SERAFM’s predictions with
observed fish mercury concentrations for a single fish species in four ecosystems showed that the model under-
predicted mean concentrations for one water body, over-predicted mean  concentrations for a second  water body, and  
accurately predicted mean  concentrations for the other two. The error bars for the observed  fish mercury
concentrations in these four ecosystems were large, making it difficult to assess the models’ accuracy. Modeling the  
four ecosystems also showed how the assumed physical and chemical characteristics of the specific ecosystem
affected absolute fish mercury concentrations and the length of time before fish mercury concentrations reached
steady state. 

Although EPA concluded that the best available science supports the assumption of a linear relationship between 
atmospheric deposition and fish mercury concentrations for broad-scale use, the more detailed ecosystem modeling 
demonstrated that individual ecosystems were highly sensitive to uncertainties in model parameters.  The Agency
also noted that many  of the model uncertainties could not be quantified. Although the case studies covered the bulk  
of the key environmental characteristics, EPA found that extrapolating the individual ecosystem case studies to
account for the variability in  ecosystems across the country  indicated that those case  studies might not represent
extreme conditions that could influence how atmospheric  mercury deposition affected fish mercury concentrations in  

6 On February 8, 2008, the U.S. Court of Appeals for the District of Columbia Circuit vacated the Clean Air 
Mercury Rule.  The DC Circuit’s vacatur of this rule was unrelated to the modeling conducted in support of the rule. 
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a water body. 

This example illustrates the usefulness of  investigating a variety of models at varying levels of complexity.  A  
hierarchical modeling approach, such as that used in the mercury analysis, can provide justification for simplified  
model assumptions or potentially provide evidence for a consistent bias that would negate the assumption that a  
simple model is appropriate for broad-scale application. 

4.2.3.3 Sensitivity and Uncertainty Analysis  

Sensitivity analysis is the study of how a model’s response can be apportioned to changes in model 
inputs (Saltelli et al. 2000a).  Sensitivity analysis is recommended as the principal evaluation tool for 
characterizing the most and least important sources of uncertainty in environmental models.   

Uncertainty analysis investigates the lack of knowledge about a certain population or the real value of 
model parameters.  Uncertainty can sometimes be reduced through further study and by collecting 
additional data.  EPA guidance (e.g., EPA 1997) distinguishes uncertainty analysis from methods used to 
account for variability in input data and model parameters.  As mentioned earlier, variability in model 
parameters and input data can be better characterized through further study but is usually not reducible 
(EPA 1997). 

Although sensitivity and uncertainty analysis are closely related, sensitivity is algorithm-specific with 
respect to model “variables” and uncertainty is parameter-specific.  Sensitivity analysis assesses the 
“sensitivity” of the model to specific parameters and uncertainty analysis assesses the “uncertainty” 
associated with parameter values. Both types of analyses are important to understand the degree of 
confidence a user can place in the model results.  Recommended techniques for conducting uncertainty 
and sensitivity analysis are discussed in Appendix D. 

The NRC committee pointed out that uncertainty analysis for regulatory environmental modeling involves 
not only analyzing uncertainty, but also communicating the uncertainties to policy makers.  To facilitate 
communication of model uncertainty, the committee recommends using hybrid approaches in which 
unknown quantities are treated probabilistically and explored in scenario-assessment mode by decision 
makers through a range of plausible values.  The committee further acknowledges (NRC 2007) that: 

Effective uncertainty communication requires a high level of interaction with the relevant decision 
makers to ensure that they have the necessary information about the nature and sources of 
uncertainty and their consequences.  Thus, performing uncertainty analysis for environmental 
regulatory activities requires extensive discussion between analysts and decision makers. 

4.3 Evaluating Proprietary Models 

This guidance defines proprietary models as those computer models for which the source code is not 
universally shared. To promote the transparency with which decisions are made, EPA prefers using non-
proprietary models when available. However, the Agency acknowledges there will be times when the use 
of proprietary models provides the most reliable and best-accepted characterization of a system.  
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When a proprietary model is used, its use should be accompanied by comprehensive, publicly available 
documentation. This documentation should describe: 

•	 The conceptual model and the theoretical basis (as described in Section 3.3.1) for the model. 
•	 The techniques and procedures used to verify that the proprietary model is free from numerical 

problems or “bugs” and that it truly represents the conceptual model (as described in Section 
3.3.3). 

•	 The process used to evaluate the model (as described in Section 4.2) and the basis for 
concluding that the model and its analytical results are of a quality sufficient to serve as the basis 
for a decision (as described in Section 4.1). 

•	 To the extent practicable, access to input and output data such that third parties can replicate the 
model results. 

4.4 Learning From Prior Experiences — Retrospective Analyses of Models 

The NRC Committee on Models in the Regulatory Decision Process emphasized that the final issue in 
managing the model evaluation process is the learning that comes from examining prior modeling 
experiences.  Retrospective analysis of models is important to individual models and regulatory policies 
and to systematically enhance the overall modeling field.  The committee pointed out that retrospective 
analyses can be considered from various perspectives: 

�	 They can investigate the systematic strengths and weaknesses that are characteristic of broad 
classes of models — for example, models of ground water flow, surface water, air pollution, and 
health risks assessment.  For example, a researcher estimated that in 20 to 30 percent of ground 
water modeling efforts, surprising occurrences indicated that the conceptual model underlying the 
computer model was invalid (Bredehoeft 2003, 2005, in NRC 2007). 

�	 They can study the processes (for example, approaches to model development and evaluation) that 
lead to successful model applications.  

�	 They can examine models that have been in use for years to determine how well they work.  Ongoing 
evaluation of the model against data, especially data taken under novel conditions, offers the best 
chance to identify and correct conceptual errors.  This type of analysis is referred to as a model “post-
audit” (see Section 5.5) 

The results of retrospective evaluations of individual models and model classes can be used to identify 
priorities for improving models. 
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Box 9:  Example of a Retrospective Model Analysis at EPA  
(From Box 4-6 in  NRC’s Models in Environmental Regulatory Decision Making) 

EPA’s Model Evaluation and Applications Research Branch has been performing a retrospective analysis of the
CMAQ model’s ability to simulate the change in a pollutant associated  with a known change in emissions (A. Gilliland,
EPA, personal commun., May 19, 2006 and March 5, 2007). This study,  which EPA terms a “dynamic evaluation”
study, focuses on a rule issue by EPA in   1998 that required 22 states and the District of Columbia to submit State
Implementation Plans providing NOx emission reductions to mitigate ozone transport in the eastern United States.
This rule, known as the NOx SIP Call, requires emission reductions from  the utility sector and large industrial boilers
in the eastern and midwestern United States by 2004. Since theses sources are equipped with continuous emission
monitoring systems, the NOx  SIP call represents a special opportunity to  directly measure the emission changes and
incorporate them into model simulations with reasonable confidence.  

Air quality model simulations  were developed for the summers of 2002 and 2004 using the CMAQ model, and the
resulting ozone predictions were compared to observed ozone concentrations. Two series of CMAQ simulations were
developed to test two different chemical mechanisms in CMAQ. This allowed an evaluation of the uncertainty
associated with the model’s representation of chemistry. Since the model's prediction of the relative change in
pollutant concentrations provides input for regulatory  decision making, this  type of dynamic evaluations is particularly
relevant to how the model is used.  

4.5 Documenting the Model Evaluation 

In its Models in Environmental Regulatory Decision Making report, the NRC summarizes the key 
elements of a model evaluation (NRC 2007). This list provides a useful framework for documenting the 
results of model evaluation as the various elements are conducted during model development and 
application: 

�	 Scientific basis. The scientific theories that form the basis for models. 
�	 Computational infrastructure. The mathematical algorithms and approaches used in executing the 

model computations. 
�	 Assumptions and limitations.  The detailing of important assumptions used in developing or 

applying a computational model, as well as the resulting limitations that will affect the model’s 
applicability. 

�	 Peer review.  The documented critical review of a model or its application conducted by qualified 
individuals who are independent of those who performed the work, but who collectively have at least 
equivalent technical expertise to those who performed the original work. Peer review attempts to 
ensure that the model is technically adequate, competently performed, properly documented, and 
satisfies established quality requirements through the review of assumptions, calculations, 
extrapolations, alternate interpretations, methodology, acceptance criteria, and/or conclusions 
pertaining from a model or its application (modified from EPA 2006). 

�	 Quality assurance and quality control (QA/QC). A system of management activities involving 
planning, implementation, documentation, assessment, reporting, and improvement to ensure that a 
model and its components are of the type needed and expected for its task and that they meet all 
required performance standards. 

�	 Data availability and quality. The availability and quality of monitoring and laboratory data that can 
be used for both developing model input parameters and assessing model results. 
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�	 Test cases. Basic model runs where an analytical solution is available or an empirical solution is 
known with a high degree of confidence to ensure that algorithms and computational processes are 
implemented correctly. 

�	 Corroboration of model results with observations. Comparison of model results with data 
collected in the field or laboratory to assess the model’s accuracy and improve its performance. 

� Benchmarking against other models. Comparison of model results with other similar models. 
� Sensitivity and uncertainty analysis. Investigation of the parameters or processes that drive model 

results, as well as the effects of lack of knowledge and other potential sources of error in the model. 
�	 Model resolution capabilities.  The level of disaggregation of processes and results in the model 

compared to the resolution needs from the problem statement or model application. The resolution 
includes the level of spatial, temporal, demographic, or other types of disaggregation. 

�	 Transparency.  The need for individuals and groups outside modeling activities to comprehend either 
the processes followed in evaluation or the essential workings of the model and its outputs. 

4.6 Deciding Whether to Accept the Model for Use in Decision Making 

The model development and evaluation process culminates in a decision to accept (or not accept) the 
model for use in decision making.  This decision is made by the program manager charged with making 
regulatory decisions, in consultation with the model developers and project team.  It should be informed 
by good communication of the key findings of the model evaluation process, including the critical issue of 
uncertainty. The project team should gain model acceptance before applying the model to decision 
making to avoid confusion and potential re-work.   
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5. Model Application 

5.1 Introduction 

Once a model has been accepted for use by decision makers, it is applied to the problem that was 
identified in the first stages of the modeling process.  Model application commonly involves a shift from 
the hindcasting (testing the model against past observed conditions) used in the model development and 
evaluation phases to forecasting (predicting a future change) in the application phase.  This may involve a 
collaborative effort between modelers and program staff to devise management scenarios that represent 
different regulatory alternatives.  Some model applications may entail trial-and-error model simulations, 
where model inputs are changed iteratively until a desired environmental condition is achieved. 

Using a model in a proposed decision requires that the model application be transparently incorporated 
into the public process.  This is accomplished by providing written documentation of the model’s relevant 
characteristics in a style and format accessible to the interested public, and by sharing specific model files 
and data with external parties, such as technical consultants and university scientists, upon request.  This 
chapter presents best practices and other recommendations for integrating the results of environmental 
models into Agency decisions.  Section 5.2 describes how to achieve and document a transparent 
modeling process, Section 5.3 reviews situations when use of multiple models may be appropriate, and 
Section 5.4 discusses the use of post-audits to determine whether the actual system response concurs 
with that predicted by the model. 

 

 
 

 

Box 10:  Examples of Major EPA  Documents That Incorporate a Substantial Amount of Computational
Modeling Activities    
(From Table 2-2 in NRC’s Models in Environmental Regulatory Decision Making) 
 
Air Quality  
Criteria Documents and Staff Paper for Establishing NAAQS  
Summarize and assess exposures and health impacts for the criteria air pollutants (ozone, particulate  matter, carbon  
monoxide, lead, nitrogen dioxide, and sulfur dioxide).  Criteria documents include results from exposure and health  
modeling studies, focusing on describing  exposure-response relationships.  For example, the particulate matter
criteria document placed emphasis on epidemiological models of morbidity and mortality (EPA 2004c).   The Staff
Paper takes this scientific foundation a step further by identifying the crucial health information and using exposure  
modeling to characterize risks that serve as the basis for the staff recommendation of the standards to the EPA
Administrator.  For example, models of the number of children exercising outdoors during those parts of the day when  
ozone is elevated had a major influence on decisions about the 8-hour ozone national ambient air quality standard  
(EPA 1996). 
State Implementation Plan (SIP) Amendments  
A detailed description of the scientific methods and emissions reduction programs a state will use to carry out its 
responsibilities under the CAA for complying with NAAQS.  A SIP typically relies on results from activity, emissions,  
and air quality  modeling.  Model-generated  emissions inventories serve as input to regional air quality  models and are 
used to test alternative emission-reduction schemes to see  whether they  will result in air quality standards being met  
(e.g., ADEC 2001; TCEQ 2004).  Regional-scale modeling  has become part of developing state implementation plans  
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for the new  8-hour ozone and fine particulate matter standards.  States, local governments, and their consultants do  
this analysis. 
Regulatory Impact Assessments (RIAs) for Air Quality Rules  
RIAs for air quality regulations document the costs and benefits of major emission control regulations.  Recent RIAs  
have included emissions, air quality, exposure, and health and economic impacts modeling results (e.g., EPA 2004b) 
 
Water Regulations  
Total Maximum Daily Load (TMDL) Determinations  
For each impaired water body, a TMDL identifies  (a) the water quality standard that is not being attained and the  
pollutant causing the impairment (b) and the total loading of the pollutant that the water may receive and still meet the  
water quality standard and (c) allocates that total loading among the point and nonpoint sources of the pollutant 
discharging to the water.   Establishment of TMDLs may  utilize water quality and/or nutrient loading models.  States 
establish most TMDLs and therefore state and their consultants can be expected to do the majority of this modeling,  
with EPA occasionally  doing the modeling for particularly contentious TMDLs (EPA 2002b; George 2004; Shoemaker  
2004; Wool 2004). 
Leaking Underground Storage Tank Program  
Assesses the potential risks associated with leaking underground gasoline storage tanks.  At an initial screening  
level, it may assess one-dimensional transport of a conservative contaminant using an analytical model (Weaver  
2004).   
Development of Maximum Contaminant Levels for Drinking Water  
Assess drinking  water standards for public water supply systems.  Such assessments can include exposure,
epidemiology, and dose-response modeling (EPA 2002c; NRC 2001b, 2005b). 
 
Pesticides and Toxic Substances Program  
Pre-manufacturing Notice Decisions  
Assess risks associated with new manufactured chemicals entering the market.  Most chemicals are screened initially  
as to their environmental and human health risks using structure-activity relationship models. 
Pesticide Reassessments  
Requires  that all existing pesticides  undergo a reassessment based on cumulative (from multiple  pesticides) and  
aggregate (exposure from multiple pathways) health risk.  This includes the use of pesticide exposure models. 
 
Solid and Hazardous Wastes Regulations  
Superfund Site Decision Documents  
Includes the remedial investigation, feasibility study, proposed plan, and record-of-decision documents that address  
the characteristics and cleanup of Superfund sites.  For many  hazardous waste sites, a primary modeling task is 
using groundwater modeling  to assess movement of toxic substances through the substrate (Burden 2004).  The 
remedial investigation for a mining megasite might include water quality, environmental chemistry,  human health risk,  
and ecological risk assessment modeling (NRC 2005a). 
 
Human Health Risk Assessment 
Benchmark Dose (BMD) Technical Guidance Document  
EPA relies on both laboratory  animal and epidemiological studies to assess the noncancer effects of chronic
exposure to pollutants (that is, the reference dose [RfD] and the inhalation reference concentration, [RfC]).  These 
data are modeled to estimate the human  dose-response.  EPA recommends the use of BMD modeling, which  
essentially fits the experimental data to use as much of the available data as possible (EPA 2000).  
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Ecological Risk Assessment 
Guidelines for Ecological Risk Assessment  
The ecological  risk assessment guidelines provide general principles and give examples to show  how  ecological risk  
assessment can be applied to a wide range of systems, stressors, and biological, spatial, and temporal scales.  They  
describe the strengths and limitations of alternative approaches and emphasize processes and approaches for
analyzing data rather than specifying data collection techniques, methods or models (EPA 1998). 

 

5.2 Transparency 

The objective of transparency is to enable communication between modelers, decision makers, and the 
public.  Model transparency is achieved when the modeling processes are documented with clarity and 
completeness at an appropriate level of detail. When models are transparent, they can be used 
reasonably and effectively in a regulatory decision. 

5.2.1 Documentation 

Documentation enables decision makers and other model users to understand the process by which a 
model was developed and used.  During model development and use, many choices must be made and 
options selected that may bias the model results.  Documenting this process and its limitations and 
uncertainties is essential to increase the utility and acceptability of the model outcomes.  Modelers and 
project teams should document all relevant information about the model to the extent practicable, 
particularly when a controversial decision is involved.  In legal proceedings, the quality and thoroughness 
of the model’s written documentation and the Agency’s responses to peer review and public comments 
on the model can affect the outcome of the legal challenge.   

The documentation should include a clear explanation of the model’s relationship to the scenario of the 
particular application.  This explanation should describe the limitations of the available information when 
applied to other scenarios.  Disclosure about the state of science used in a model and future plans to 
update the model can help establish a record of reasoned, evidence-based application to inform 
decisions.  For example, EPA successfully defended a challenge to a model used in its TMDL program 
when it explained that it was basing its decision on the best available scientific information and that it 
intended to refine its model as better information surfaced.7 

When a court reviews EPA modeling decisions, they generally give some deference to EPA’s technical 
expertise, unless it is without substantial basis in fact.  As discussed in Section 4.2.3 regarding 
corroboration, deviations from empirical observations are to be expected.  In substantive legal disputes, 
the courts generally examine the record supporting EPA’s decisions for justification as to why the model 
was reasonable.8  The record should contain not only model development, evaluation, and application but 
also the Agency’s responses to comments on the model raised during peer review and the public 
process.   The organization of this guidance document offers a general outline for model documentation. 
Box 11 provides a more detailed outline.  These elements are adapted from EPA Region 10’s standard 
practices for modeling projects. 

7 Natural Resources Defense Council v. Muszynski, 268 F.3d 91 (2d Cir. 2001). 
8 American Iron and Steel Inst. v. EPA, 115 F.3d 979 (D.C. Cir. 1997). 

37 




 

 

 

 

 
 
 

 
 

 

Box 11:  Recommended Elements for Model Documentation  
 
1. Management Objectives 
�  Scope of problem 
�  Technical objectives that result from management objectives 
�  Level of analysis needed 
�  Level of confidence needed 
 
2. Conceptual Model  
�  System boundaries (spatial and temporal domain) 
�  Important time and length scales 
� Key  processes  
� System characteristics 
� Source description 
� Available data sources (quality and quantity)  
� Data gaps 
�  Data collection programs (quality and quantity) 
� Mathematical model 
� Important assumptions 
 
3. Choice of Technical Approach  
�  Rationale for approach in context of management objectives and conceptual model 
�  Reliability and acceptability of approach 
� Important assumptions 
 
4. Parameter Estimation  
�  Data used for parameter estimation 
�  Rationale for estimates in the absence of data 
�  Reliability of parameter estimates 
 
5. Uncertainty/Error 
�  Error/uncertainty in inputs, initial conditions, and boundary conditions 
�  Error/uncertainty in pollutant loadings  
�  Error/uncertainty in specification of environment 
�  Structural errors in methodology (e.g., effects of aggregation or simplification) 
 
6. Results  
�  Tables of all parameter values used for analysis  
�  Tables or graphs of all results used in support of management objectives or conclusions  
�  Accuracy  of results  
 
7. Conclusions of analysis in relationship to management objectives  
 
8. Recommendations for additional analysis, if necessary  
 
Note: The QA project plan for models (EPA 2002b)  includes a documentation and records component that also
describes the types of records and level of detailed documentation to be kept depending on the scope and magnitude  
of the project.  

5.2.2 Effective Communication 

The modeling process should effectively communicate uncertainty to anyone interested in the model 
results. All technical information should be documented in a manner that decision makers and 
stakeholders can readily interpret and understand.  Recommendations for improving clarity, adapted from 
the Risk Characterization Handbook (EPA 2000d), include the following: 

� Be as brief as possible while still providing all necessary details. 
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�  Use plain language that modelers, policy makers, and the informed lay person can understand. 
�  Avoid jargon and excessively technical language.  Define specialized terms upon first use. 
�  Provide the model equations. 
�  Use clear and appropriate methods to efficiently display mathematical relationships. 
�  Describe quantitative outputs clearly. 
�  Use understandable tables and graphics to present technical data (see Morgan and Henrion, 1990, 

for suggestions). 

The conclusions and other key points of the modeling project should be clearly communicated.  The 
challenge is to characterize these essentials for decision makers, while also providing them with more 
detailed information about the modeling process and its limitations.  Decision makers should have 
sufficient insight into the model framework and its underlying assumptions to be able to apply model 
results appropriately.  This is consistent with QA planning practices that assert that all technical reports 
must discuss the data quality and any limitations with respect to their intended use (EPA 2000e). 

5.3 Application of Multiple Models 

As mentioned in earlier chapters, multiple models sometimes apply to a certain decision making need; for 
example, several air quality models, each with its own strengths and weaknesses, might be applied for 
regulatory purposes.  In other situations, stakeholders may use alternative models (developed by industry 
and academic researchers) to produce alternative risk assessments (e.g., CARES pesticide exposure 
model developed by industry).  One approach to address this issue is to use multiple models of varying 
complexities to simulate the same phenomena (NRC 2007).  This may provide insight into how sensitive 
the results are to different modeling choices and how much trust to put in the results from any one model. 
Experience has shown that running multiple models can increase confidence in the model results (Manno 
et al. 2008) (see Box 8 in Chapter 4 for an example).  However, resource limitations or regulatory time 
constraints may limit the capacity to fully evaluate all possible models. 

5.4 Model Post-Audit 

Due to time complexity, constraints, scarcity of resources, and/or lack of scientific understanding, 
technical decisions are often based on incomplete information and imperfect models.  Further, even if 
model developers strive to use the best science available, scientific knowledge and understanding are 
continually advancing.  Given this reality, decision makers should use model results in the context of an 
iterative, ever-improving process of continuous model refinement to demonstrate the accountability of 
model-based decisions. This process includes conducting model post-audits to assess and improve a 
model and its ability to provide valuable predictions for management decisions.  Whereas corroboration 
(discussed in Section 4.2.3.2) demonstrates the degree to which a model corresponds to past system 
behavior, a model post-audit assesses its ability to model future conditions (Anderson and Woessner 
1992).   

A model post-audit involves monitoring the modeled system, after implementing a remedial or 
management action, to determine whether the actual system response concurs with that predicted by the 
model. Post-auditing of all models is not feasible due to resource constraints, but targeted audits of 
commonly used models may provide valuable information for improving model frameworks and/or model 
parameter estimates. In its review of the TMDL program, the NRC recommended that EPA implement 
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this approach by selectively targeting “some post-implementation TMDL compliance monitoring for 
verification data collection to assess model prediction error” (NRC 2001).  The post-audit should also 
evaluate how effectively the model development and use process engaged decision makers and other 
stakeholders (Manno et al. 2008). 
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Appendix A: Glossary of Frequently Used Terms 

Accuracy:  The closeness of a measured or computed value to its “true” value, where the “true” value is 
obtained with perfect information.  Due to the natural heterogeneity and stochasticity of many 
environmental systems, this “true” value exists as a distribution rather than a discrete value.  In these 
cases, the “true” value will be a function of spatial and temporal aggregation. 

Algorithm:  A precise rule (or set of rules) for solving some problem. 

Analytical model:  A model that can be solved mathematically in terms of analytical functions.  For 
example, some models that are based on relatively simple differential equations can be solved 
analytically by combinations of polynomials, exponential, trigonometric, or other familiar functions. 

Applicability and utility: One of EPA’s five assessment factors (see definition) that describes the extent 
to which the information is relevant for the Agency’s intended use (EPA 2003b). 

Application niche: The set of conditions under which the use of a model is scientifically defensible.  The 
identification of application niche is a key step during model development.  Peer review should include an 
evaluation of application niche. An explicit statement of application niche helps decision makers 
understand the limitations of the scientific basis of the model (EPA 1993). 

Application niche uncertainty:  Uncertainty as to the appropriateness of a model for use under a 
specific set of conditions (see “application niche”). 

Assessment factors: Considerations recommended by EPA for evaluating the quality and relevance of 
scientific and technical information.  The five assessment factors are soundness, applicability and utility, 
clarity and completeness, uncertainty and variability, and evaluation and review (EPA 2003b). 

Bias:  Systemic deviation between a measured (i.e., observed) or computed value and its “true” value. 
Bias is affected by faulty instrument calibration and other measurement errors, systemic errors during 
data collection, and sampling errors such as incomplete spatial randomization during the design of 
sampling programs. 

Boundaries:  The spatial and temporal conditions and practical constraints under which environmental 
data are collected.  Boundaries specify the area or volume (spatial boundary) and the time period 
(temporal boundary) to which a model application will apply (EPA 2000a). 

Boundary conditions:  Sets of values for state variables and their rates along problem domain 
boundaries, sufficient to determine the state of the system within the problem domain. 

Calibration:  The process of adjusting model parameters within physically defensible ranges until the 
resulting predictions give the best possible fit to the observed data (EPA 1994b).  In some disciplines, 
calibration is also referred to as “parameter estimation” (Beck et al. 1994). 

Checks:  Specific tests in a quality assurance plan that are used to evaluate whether the specifications 
(performance criteria) for the project developed at its onset have been met. 
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Clarity and completeness: One of EPA’s five assessment factors (see definition) that describes the 
degree of clarity and completeness with which the data, assumptions, methods, quality assurance, 
sponsoring organizations, and analyses employed to generate the information are documented (EPA 
2003b). 

Class (see “object-oriented platform”):  A set of objects that share a common structure and behavior. 
The structure of a class is determined by the class variables, which represent the state of an object of that 
class; the behavior is given by the set of methods associated with the class (Booch 1994). 

Code:  Instructions, written in the syntax of a computer language, that provide the computer with a logical 
process.  “Code” can also refer to a computer program or subset.  The term “code” describes the fact that 
computer languages use a different vocabulary and syntax than algorithms that may be written in 
standard language. 

Code verification:  Examination of the algorithms and numerical technique in the computer code to 
ascertain that they truly represent the conceptual model and that there are no inherent numerical 
problems with obtaining a solution (Beck et al. 1994). 

Complexity:  The opposite of simplicity. Complex systems tend to have a large number of variables, 
multiple parts, and mathematical equations of a higher order, and to be more difficult to solve.  Used to 
describe computer models, “complexity” generally refers to the level in difficulty in solving mathematically 
posed problems as measured by the time, number of steps or arithmetic operations, or memory space 
required (called time complexity, computational complexity, and space complexity, respectively).  

Computational models: Models that use measurable variables, numerical inputs, and mathematical 
relationships to produce quantitative outputs. 

Conceptual basis:  An underlying scientific foundation of model algorithms or governing equations. The 
conceptual basis for a model is either empirical (based on statistical relationships between observations) 
or mechanistic (process-based) or a combination.  See definitions for “empirical model” and “mechanistic 
model.” 

Conceptual model:  A hypothesis regarding the important factors that govern the behavior of an object 
or process of interest.  This can be an interpretation or working description of the characteristics and 
dynamics of a physical system (EPA 1994b). 

Confounding error:  An error induced by unrecognized effects from variables that are not included in the 
model. The unrecognized, uncharacterized nature of these errors makes them more difficult to describe 
and account for in statistical analysis of uncertainty (Small and Fishbeck 1999). 

Constant:  A fixed value (e.g., the speed of light, the gravitational force) representing known physical, 
biological, or ecological activities. 
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Corroboration (model):  Quantitative and qualitative methods for evaluating the degree to which a model 
corresponds to reality.  In some disciplines, this process has been referred to as validation.  In general, 
the term “corroboration” is preferred because it implies a claim of usefulness and not truth. 

Data uncertainty:  Uncertainty (see definition) that is caused by measurement errors, analytical 
imprecision, and limited sample sizes during the collection and treatment of data.  Data uncertainty, in 
contrast to variability (see definition), is the component of total uncertainty that is “reducible” through 
further study.     

Debugging:  The identification and removal of bugs from computer code.  Bugs are errors in computer 
code that range from typos to misuse of concepts and equations.   

Deterministic model:  A model that provides a solution for the state variables rather than a set of 
probabilistic outcomes.  Because this type of model does not explicitly simulate the effects of data 
uncertainty or variability, changes in model outputs are solely due to changes in model components or in 
the boundary conditions or initial conditions. 

Domain (spatial and temporal):  The spatial and temporal domains of a model cover the extent and 
resolution with respect to space and time for which the model has been developed and over which it 
should be evaluated. 

Domain boundaries (spatial and temporal):  The limits of space and time that bound a model’s domain 
and are specified within the boundary conditions (see “boundary conditions”). 

Dynamic model: A model providing the time-varying behavior of the state variables. 

Empirical model: A model whose structure is determined by the observed relationship among 
experimental data (Suter 1993).  These models can be used to develop relationships that are useful for 
forecasting and describing trends in behavior, but they are not necessarily mechanistically relevant. 

Environmental data:  Information collected directly from measurements, produced from models, and 
compiled from other sources such as databases and literature (EPA 2002a). 

Evaluation and review: One of EPA’s five assessment factors (see definition) that describes the extent 
of independent verification, validation, and peer review of the information or of the procedures, measures, 
methods, or models (EPA 2003b). 

Expert elicitation: A systematic process for quantifying, typically in probabilistic terms, expert judgments 
about uncertain quantities.  Expert elicitation can be used to characterize uncertainty and fill data gaps 
where traditional scientific research is not feasible or data are not yet available.  Typically, the necessary 
quantities are obtained through structured interviews and/or questionnaires.  Procedural steps can be 
used to minimize the effects of heuristics and bias in expert judgments. 

Extrapolation:  Extrapolation is a process that uses assumptions about fundamental causes underlying 
the observed phenomena in order to project beyond the range of the data.  In general, extrapolation is not 
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considered a reliable process for prediction; however, there are situations where it may be necessary and 
useful. 

False negative:  Also known as a false acceptance decision errors, a false negative occurs when the null 
hypothesis or baseline condition cannot be rejected based on the available sample data.  The decision is 
made assuming the baseline condition is true when in reality it is false (EPA 2000a).   

False positive:  Also known as a false rejection decision error, a false positive occurs when the null 
hypothesis or baseline condition is incorrectly rejected based on the sample data.  The decision is made 
assuming the alternate condition or hypothesis to be true when in reality it is false (EPA 2000a).   

Forcing/driving variable:  An external or exogenous (from outside the model framework) factor that 
influences the state variables calculated within the model.  Such variables include, for example, climatic 
or environmental conditions (temperature, wind flow, oceanic circulation, etc.). 

Forms (models):  Models can be represented and solved in different forms, including analytic, stochastic, 
and simulation. 

Function:  A mathematical relationship between variables. 

Graded approach:  The process of basing the level of application of managerial controls to an item or 
work on the intended use of results and degree of confidence needed in the results (EPA 2002b). 

Integrity:  One of three main components of quality in EPA’s Information Quality Guidelines.  “Integrity” 
refers to the protection of information from unauthorized access or revision to ensure that it is not 
compromised through corruption or falsification (EPA 2002a). 

Intrinsic variation:  The variability (see definition) or inherent randomness in the real-world processes. 

Loading:  The rate of release of a constituent of interest to a particular receiving medium. 

Measurement error:  An error in the observed data caused by human or instrumental error during 
collection.  Such errors can be independent or random.  When a persistent bias or mis-calibration is 
present in the measurement device, measurement errors may be correlated among observations (Small 
and Fishbeck 1999).  In some disciplines, measurement error may be referred to as observation error. 

Mechanistic model:  A model whose structure explicitly represents an understanding of physical, 
chemical, and/or biological processes.  Mechanistic models quantitatively describe the relationship 
between some phenomenon and underlying first principles of cause.  Hence, in theory, they are useful for 
inferring solutions outside the domain in which the initial data were collected and used to parameterize 
the mechanisms.   

Mode (of a model):  The manner in which a model operates.  Models can be designed to represent 
phenomena in different modes.  Prognostic (or predictive) models are designed to forecast outcomes and 
future events, while diagnostic models work “backwards” to assess causes and precursor conditions.   
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Model:  A simplification of reality that is constructed to gain insights into select attributes of a physical, 
biological, economic, or social system.  A formal representation of the behavior of system processes, 
often in mathematical or statistical terms.  The basis can also be physical or conceptual (NRC 2007). 

Model coding:  The process of translating the mathematical equations that constitute the model 
framework into a functioning computer program. 

Model evaluation:  The process used to generate information to determine whether a model and its 
results are of a quality sufficient to serve as the basis for a regulatory decision. 

Model framework: The system of governing equations, parameterization, and data structures that make 
up the mathematical model.  The model framework is a formal mathematical specification of the concepts 
and procedures of the conceptual model consisting of generalized algorithms (computer code/software) 
for different site- or problem-specific simulations (EPA 1994b). 

Model framework uncertainty:  The uncertainty in the underlying science and algorithms of a model. 
Model framework uncertainty is the result of incomplete scientific data or lack of knowledge about the 
factors that control the behavior of the system being modeled.  Model framework uncertainty can also be 
the result of simplifications necessary to translate the conceptual model into mathematical terms. 

Module:  An independent or self-contained component of a model, which is used in combination with 
other components and forms part of one or more larger programs. 

Noise:  Inherent variability that the model does not characterize (see definition for variability). 

Objectivity:  One of three main components of quality in EPA’s Information Quality Guidelines.  It 
includes whether disseminated information is being presented in an accurate, clear, complete and 
unbiased manner. In addition, objectivity involves a focus on ascertaining accurate, reliable, and unbiased 
information (EPA 2002a). 

Object-oriented platform:  A type of user interface that models systems using a collection of cooperating 
“objects.” These objects are treated as instances of a class within a class hierarchy 

Parameters:  Terms in the model that are fixed during a model run or simulation but can be changed in 
different runs as a method for conducting sensitivity analysis or to achieve calibration goals. 

Parameter uncertainty: Uncertainty (see definition) related to parameter values. 

Parametric variation: When the value of a parameter itself is not a constant and includes natural 
variability. Consequently, the parameter should be described as a distribution (Shelly et al. 2000). 

Perfect information:  The state of information where in which there is no uncertainty.  The current and 
future values for all parameters are known with certainty.  The state of perfect information includes 
knowledge about the values of parameters with natural variability. 
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Precision:  The quality of being reproducible in amount or performance.  With models and other forms of 
quantitative information, “precision” refers specifically to the number of decimal places to which a number 
is computed as a measure of the “preciseness” or “exactness” with which a number is computed. 

Probability density function:  Mathematical, graphical, or tabular expression of the relative likelihoods 
with which an unknown or variable quantity may take various values.  The sum (or integral) of all 
likelihoods equals 1 for discrete (continous) random variables (Cullen and Frey 1999).  These 
distributions arise from the fundamental properties of the quantities we are attempting to represent.  For 
example, quantities formed from adding many uncertain parameters tend to be normally distributed, and 
quantities formed from multiplying uncertain quantities tend to be lognormal (Morgan and Henrion 1990). 

Program (computer):  A set of instructions, written in the syntax of a computer language, that provide 
the computer with a step-by-step logical process.  Computer programs are also referred to as code. 

Qualitative assessment:  Some of the uncertainty in model predictions may arise from sources whose 
uncertainty cannot be quantified.  Examples are uncertainties about the theory underlying the model, the 
manner in which that theory is mathematically expressed to represent the environmental components, 
and the theory being modeled.  The subjective evaluations of experts may be needed to determine 
appropriate values for model parameters and inputs that cannot be directly observed or measured (e.g., 
air emissions estimates).  Qualitative corroboration activities may involve the elicitation of expert judgment 
on the true behavior of the system and agreement with model-forecasted behavior. 

Quality:  A broad term that includes notions of integrity, utility, and objectivity (EPA 2002a).  

Quantitative assessment:  The uncertainty in some sources — such as some model parameters and 
some input data — can be estimated through quantitative assessments involving statistical uncertainty 
and sensitivity analyses.  In addition, comparisons can be made for the special purpose of quantitatively 
describing the differences to be expected between model estimates of current conditions and comparable 
field observations.   

Reducible uncertainty:  Uncertainty in models that can be minimized or even eliminated with further 
study and additional data (EPA 1997). See “data uncertainty.“ 

Quality:  A broad term that includes notions of integrity, utility, and objectivity (USEPA 2002a).  

Reducible Uncertainty:  Uncertainty in models that can be minimized or even eliminated with further study 

and additional data (USEPA 1997).  See data uncertainty.   


Reliability: The confidence that (potential) users have in a model and in the information derived from the 
model such that they are willing to use the model and the derived information (Sargent 2000). 
Specifically, reliability is a function of the performance record of a model and its conformance to best 
available, practicable science. 

Response surface:  A theoretical multi-dimensional “surface” that describes the response of a model to 
changes in its parameter values.  A response surface is also known as a sensitivity surface. 
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Robustness:  The capacity of a model to perform well across the full range of environmental conditions 
for which it was designed. 

Screening model:  A type of model designed to provide a “conservative” or risk-averse answer. 
Screening models can be used with limited information and are conservative, and in some cases they can 
be used in lieu of refined models, even when time or resources are not limited. 

Sensitivity:  The degree to which the model outputs are affected by changes in selected input 
parameters (Beck et al. 1994). 

Sensitivity analysis:  The computation of the effect of changes in input values or assumptions (including 
boundaries and model functional form) on the outputs (Morgan and Henrion 1990); the study of how 
uncertainty in a model output can be systematically apportioned to different sources of uncertainty in the 
model input (Saltelli et al. 2000a).  By investigating the “relative sensitivity” of model parameters, a user 
can become knowledgeable of the relative importance of parameters in the model. 

Simulation model: A model that represents the development of a solution by incremental steps through 
the model domain.  Simulations are often used to obtain solutions for models that are too complex to be 
solved analytically. For most situations, where a differential equation is being approximated, the 
simulation model will use finite time step (or spatial step) to “simulate” changes in state variables over 
time (or space). 

Soundness:  One of EPA’s five assessment factors (see definition) that describes the extent to which the 
scientific and technical procedures, measures, methods, or models employed to generate the information 
are reasonable for and consistent with the intended application (EPA 2003b). 

Specifications:  Acceptance criteria set at the onset of a quality assurance plan that help to determine if 
the intended objectives of the project have been met.  Specifications are evaluated using a series of 
associated checks (see definition). 

State variables:  The dependent variables calculated within a model, which are also often the 
performance indicators of the models that change over the simulation.   

Statistical model:  A model built using observations within a probabilistic framework. Statistical models 
include simple linear or multivariate regression models obtained by fitting observational data to a 
mathematical function. 

Steady-state model:  A model providing the long-term or time-averaged behavior of the state variables. 

Stochasticity:  Fluctuations in ecological processes that are due to natural variability and inherent 
randomness. 

Stochastic model:  A model that includes variability (see definition) in model parameters.  This variability 
is a function of changing environmental conditions, spatial and temporal aggregation within the model 
framework, and random variability.  The solution obtained by the model or output is therefore a function of 
model components and random variability. 
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Transparency:  The clarity and completeness with which data, assumptions, and methods of analysis 
are documented.  Experimental replication is possible when information about modeling processes is 
properly and adequately communicated (EPA 2002a). 

Uncertainty:  The term used in this document to describe lack of knowledge about models, parameters, 
constants, data, and beliefs.  There are many sources of uncertainty, including the science underlying a 
model, uncertainty in model parameters and input data, observation error, and code uncertainty. 
Additional study and collecting more information allows error that stems from uncertainty to be 
minimized/reduced (or eliminated).  In contrast, variability (see definition) is irreducible but can be better 
characterized or represented with further study (EPA 2002b, Shelly et al. 2000). 

Uncertainty analysis:  Investigation of the effects of lack of knowledge or potential errors on the model 
(e.g, the “uncertainty” associated with parameter values). When combined with sensitivity analysis (see 
definition), uncertainty analysis allows a model user to be more informed about the confidence that can 
be placed in model results.   

Uncertainty and variability:  One of EPA’s five assessment factors (see definition) that describes the 
extent to which the variability and uncertainty (quantitative and qualitative) in the information or in the 
procedures, measures, methods, or models are evaluated and characterized (EPA 2003b). 

Utility:  One of three main components of quality in EPA’s Information Quality Guidelines.  “Utility” refers 
to the usefulness of the information to the intended users (EPA 2002a).   

Variable:  A measured or estimated quantity that describes an object or can be observed in a system and 
that is subject to change. 

Variability: Observed differences attributable to true heterogeneity or diversity.  Variability is the result of 
natural random processes and is usually not reducible by further measurement or study (although it can 
be better characterized) (EPA 1997).   

Verification (code):  Examination of the algorithms and numerical technique in the computer code to 
ascertain that they truly represent the conceptual model and that there are no inherent numerical 
problems with obtaining a solution (Beck et al 1994). 
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Appendix B: Categories of Environmental Regulatory Models 
This section is taken from Appendix C of the NRC report Models in Environmental Regulatory Decision 
Making. 

Models can be categorized according to their fit into a continuum of processes that translate human 
activities and natural systems interactions into human health and environmental impacts. The categories 
of models that are integral to environmental regulation include human activity models, natural systems 
models, emissions models, fate and transport models, exposure models, human health and 
environmental response models, economic impact models, and noneconomic impact models. Examples 
of models in each of these categories are discussed below. 

HUMAN ACTIVITY MODELS 
Anthropogenic emissions to the environment are inherently linked to human activities. Activity models 

simulate the human activities and behaviors that result in pollutants. In the environmental regulatory 


modeling arena, examples of modeled activities are the following: 

� Demographic information, such as the magnitude, distribution, and dynamics of human populations, 


ranging from national growth projections to local travel activity patterns on the order of hours. 
�	 Economic activity, such as the macroeconomic estimates of national economic production and 

income, final demands for aggregate industrial sectors, prices, international trade, interest rates, and 
financial flows. 

�	 Human consumption of resources, such as gasoline or feed, may be translated into pollutant 
releases, such as nitrogen oxides or nutrients. Human food consumption is also used to estimate 
exposure to pollutants such as pesticides. Resource consumption in dollar terms may be used to 
assess economic impacts. 

�	 Distribution and characteristics of land use are used to assess habitat, impacts on the hydrogeologic 
cycle and runoff, and biogenic pollutant releases. 

Model Type Use Additional Information 
TRANSCAD, 
TRANSPLAN, 
MINUTP 

Travel demand 
forecasting 
models 

Develops estimation of motor vehicle miles traveled 
for use in estimating vehicle emissions.  Can be 
combined with geographic information systems 
(GIS) for providing spatial and temporal distribution 
of motor vehicle activity. 

http://www.caliper.com/tcvo 
u.htm 

DRI Forecasts 
national 
economic 
indicators 

Model can forecast over 1,200 economic concepts 
including aggregate supply, demand, prices, 
incomes, international trade, interest rates, etc.  The 
eight sectors of the model are: domestic spending, 
domestic income, tax sector, prices, financial, 
international trade, expectations, and aggregate 
supply. 

EIA 1993 

E-GAS National and 
regional 
economic activity 
model 

Emissions growth factors for various sector for 
estimating volatile organic compounds, nitrogen 
oxides, and carbon monoxide emissions. 

Young et al. 1994 

YIELD Crop-growth 
yield model 

Predicts temporal and spatial crop yield. Hayes et al. 1982 

NATURAL SYSTEMS PROCESS AND EMISSIONS MODELS 
Natural systems process and emissions models simulate the dynamics of ecosystems that directly or 
indirectly give rise to fluxes of nutrients and other environmental emissions. 
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Model Type Use Additional Information 
Marine 
Biological 
Laboratory 
General 
Ecosystem 
Model (MBL-
GEM) 

Pilot-scale 
nutrient cycling 
of carbon and 
nitrogen 

Simulates plot-level photosynthesis and nitrogen 
uptake by plants, allocation of carbon and nitrogen 
to foliage, stems, and fine roots, respiration in these 
tissues, turnover of biomass through litter fall, and 
decomposition of litter and soil organic matter. 

http://ecosystems.mbl.edu/ 
Research/Models/gem/wel 
come.html 

BEIS Natural 
emissions of 
volatile organic 
compounds 

Simulates nitric oxide emissions from soils and 
volatile organic compound emissions from 
vegetation. Input to grid models for NAAQS 
attainment (CAA) 

http://www.epa.gov/asmdn 
erl/biogen.html 

Natural 
Emissions 
Model 

Natural 
emissions of 
methane and 
nitrous oxide 

Models methane and nitrous oxide emissions from 
the terrestrial biosphere to atmosphere. 

http://web.mit.edu/globalch 
ange/www/tem.html#nem 

EMISSIONS MODELS 
These models estimate the rate or the amount of pollutant emissions to water bodies and the 
atmosphere. The outputs of emission models are used to generate inventories of pollutant releases that 
can then serve as an input to fate and transport models. 

Model Type Use Additional Information 
PLOAD Releases to 

water bodies 
GIS bulk loading model providing annual pollutant 
loads to waterbodies.  Conducts simplified analyses 
of sediment issues, including a bank erosion hazard 
index. 

http://www.epa.gov/ost/basi 
ns 

SPARROW Releases to 
water bodies 

Relates nutrient sources and watershed 
characteristics to total nitrogen.  Predicts 
contaminant flux, concentration, and yield in 
streams. Provides empirical estimates (including 
uncertainties) of the fate of contaminants in streams. 

http://water.usgs.gov/nawq 
a/sparrow 

MOBILE 
MOVES 
NONROAD 

Releases to air Factors and activities for anthropogenic emissions 
from mobile sources. Estimates current and future 
emissions (hydrocarbons, carbon monoxide, 
nitrogen oxides, particulate matter, hazardous air 
pollutants, and carbon dioxide) from highway motor 
vehicles. Model used to evaluate mobile source 
control strategies, control strategies for state 
implementation plans, and for developing 
environmental impact statements, in addition to 
other research. 

http://www.epa.gov/ 
otaq/m6.htm 

http://www.epa.gov/ 
otaq/nonrdmdl.htm 

EPA 2004, EPA 2005a, 
Glover and Cumberworth 
2003 

FATE AND TRANSPORT MODELS 
Fate and transport models calculate the movement of pollutants in the environment. A large number of 


EPA models fall into this category. They are further categorized into the transport media they represent: 

subsurface, air, and surface water. In each medium, there are a range of models with respect to their 

complexity, where the level of complexity is a function of the following: 

� The number of physical and chemical processes considered. 

� The mathematical representation of those processes and their numerical solution. 

� The spatial and temporal scales over which the processes are modeled. 


Even though some fate and transport models can be statistical models, the majority is mechanistic (also 

referred to as process-based models). Such models simulate individual components in the system and
 

the mathematical relationships among the components. Fate and transport model output has traditionally
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been deterministic, although recent focus on uncertainty and variability has led to some probabilistic 
models. 

Subsurface Models 
Subsurface transport is governed by the heterogeneous nature of the ground, the degree of saturation of 
the subsurface, as well as the chemical and physical properties of the pollutants of interest.  Such models 
are used to assess the extent of toxic substance spills. They can also assess the fate of contaminants in 
sediments. The array of subsurface models is tailored to particular application objectives, for example, 
assessing the fate of contaminants leaking from underground gasoline storage tanks or leaching from 
landfills. Models are used extensively for site-specific risk assessments; for example, to determine 
pollutant concentrations in drinking-water sources. The majority of models simulate liquid pollutants; 
however, some simulate gas transport in the subsurface. 

Model Type Use Additional Information 
MODFLOW 3D finite 

difference for 
ground water 
transport 

Risk Assessments (RBCA) Superfund Remediation 
(CERCLA). Modular three-dimensional model that 
simulates ground water flow. Model can be used to 
support groundwater management activities. 

http://water.usgs.gov/ 
nrp/gwsoftware/ 
modflow2000/ 
modflow2000.html 

Prudic et al. 2004, 
Wilson and Naff 2004 

PRZM Hydrogeological Pesticide leaching into the soil and root zone of 
plants (FIFRA). Estimates pesticide and nitrogen 
fate in the crop zone root and can simulate soil 
temperature, volatilization and vapor phase transport 
in soil, irrigation, and microbial transformation. 

http://www.epa.gov/ 
ceampubl/products.htm 

EPA 2005b 

BIOPLUME Two-dimensional 
finite difference 
and Method of 
Characteristics 
(MOC) model 

Simulates organic contaminants in groundwater due 
to natural processes of dispersion, advection, 
sorption, and biodegradation. Simulates aerobic and 
anaerobic biodegradation reactions. 

http://www.epa.gov/ada/ 
csmos/models.html 

EPA 1998 

Surface Water Quality Models 
Surface water quality models are often related to, or are variations of, hydrological models. The latter are 
designed to predict flows in water bodies and runoff from precipitation, both of which govern the transport 
of aqueous contaminants. Of particular interest in some water quality models is the mixing of 
contaminants as a function of time and space, for example, following a point-source discharge into a river. 
Other features of these models are the biological, chemical, and physical removal mechanisms of 
contaminants, such as degradation, oxidation, and deposition, as well as the distribution of the 
contaminants between the aqueous phase and organisms. 

Model Type Use Additional Information 
HSPF Combined 

watershed 
hydrology and 
water quality 

Total maximum daily load determinations 
TMDL (CWA). Watershed model simulating nonpoint 
pollutant load and runoff, fate and transport 
processes in streams. 

http://www.epa.gov/ 
ceampubl/swater/hspf/ 

WASP Compartment 
modeling for 
aquatic systems 

Supports management decisions by predicting water 
quality responses to pollutants in aquatic systems. 
Multicompartment model that examines both the 
water column and underlying benthos. 

http://www.epa.gov/ 
athens/wwqtsc/html/ 
wasp.html 

Brown 1986, Brown and 
Barnwell 1987 

QUAL2E Steady-state and 
quasi-dynamic 
water quality 
model 

Stream water quality model used as a planning tool 
for developing TMDLs. The model can simulate 
nutrient cycles, benthic and carbonaceous demand, 
algal production, among other parameters. 

http://www3.bae.ncsu. 
edu/ Regional-
Bulletins/Modeling- 
Bulletin/qual2e.html 
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Air Quality Models 
The fate of gaseous and solid particle pollutants in the atmosphere is a function of meteorology, 
temperature, relative humidity, other pollutants, and sunlight intensity, among other things. Models that 
simulate concentrations in air have one of three general designs: plume models, grid models, and 
receptor models. Plume models are used widely for permitting under requirements to assess the impacts 
of large new or modified emissions sources on air quality or to assess air toxics (HAPs) concentrations 
close to sources. Plume models focus on atmosphere dynamics. Grid models are used primarily to 
assess concentrations of secondary criteria pollutants (e.g., ozone) in regional airsheds to develop plans 
(SIPs) and rules with the objective of attaining ambient air quality standards (NAAQS). Both atmospheric 
dynamics and chemistry are important components of 3-D grid models. In contrast to mechanistic plume 
and grid models, receptor models are statistical; they determine the statistical contribution of various 
sources to pollutant concentrations at a given location based on the relative amounts of pollutants at 
source and receptor. Most air quality models are deterministic. 

Model Type Use Additional Information 
CMAQ 3-D Grid SIP development, NAAQS setting (CAA). The model 

provides estimates of ozone, particulates, toxics, 
and acid deposition and simulates chemical and 
physical properties related to atmospheric trace gas 
transformations and distributions. Model has three 
components including, meteorological system, an 
emissions model for estimating anthropogenic and 
natural emissions, and a chemistry-transport 
modeling system. 

http://www.epa.gov/ 
asmdnerl/CMAQ/ 
index.html 

Byun and Ching 1999 

UAM 3-D Grid Model calculates concentrations of inert and 
chemically reactive pollutants and is used to 
evaluate air quality, particularly related to ambient 
ozone concentrations. 

Systems Applications 
International, Inc., 1999 

REMSAD 3-D Grid Using simulation of physical and chemical processes 
in the atmosphere that impact pollutant 
concentrations, model calculates concentration of 
inert and chemically reactive pollutants. 

http://www.remsad.com 

ICF Consulting 2005 

ICSC 
CALPUFF 

Plume PSD permitting; toxics exposure (CAA, TSCA). 
Non-steady-state air quality dispersion model that 
simulates long range transport of pollutants. 

CMB Receptor Relative contributions of sources. Receptor model 
used for air resource management purposes. 

http://www.epa.gov/scra 
m001/receptor_cmb.htm 

Coulter 2004 

EXPOSURE MODELS 
The primary objective of exposure models is to estimate the dose of pollutant which humans or animals 
are exposed to via inhalation, ingestion and/or dermal uptake. These models bridge the gap between 
concentrations of pollutants in the environment and the doses humans receive based on their activity. 
Pharmacokinetic models take this one step further and estimate dose to tissues in the body.  Since 
exposure is inherently tied to behavior, exposure models may also simulate activity, for example a model 
that estimates dietary consumption of pollutants. In addition to the Lifeline model described below, other 
examples of models that estimate dietary exposure to pesticides include Calendex and CARES.  These 
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models can be either deterministic or probabilistic, but are well-suited for probabilistic methods due to the 
variability of activity within a population. 

Model Type Use Additional Information 
Lifeline Diet, water and 

dermal of single 
chemical 

Aggregate dose of pesticide via multiple pathways http://www.thelifeline 
group.org 

Lifeline Group, Inc. 
2006 

IEUBK Multipathway, 
single chemical 

Dose of lead to children’s blood via multiple 
pathways. Estimates exposure from lead in media 
(air, water, soil, dust, diet, and paint and other 
sources) using pharmacokinetic models to predict 
blood lead levels in children 6 months to 7 years old. 
The model can be used as a tool for the 
determination of site-specific cleanup levels. 

http://www.epa.gov/ 
superfund/programs/ 
lead/products.htm 

EPA 1994 

Air Pollutants 
Exposure 
Model (APEX) 

Inhalation 
exposure model 

Simulates an individual’s exposure to an air pollutant 
and their movement through space and time in 
indoor or outdoor environments. Provides dose 
estimates and summary exposure information for 
each individual. 

http://www.epa.gov/ttn/ 
fera/human_apex.html 

Richmond et al. 2001 

HUMAN HEALTH AND ENVIRONMENT RESPONSE MODELS 

Human Health Effects Models 
Health effects models provide a statistical relationship between a dose of a chemical and an adverse 
human health effect. Health effects models are statistical methods, hence models in this category are 
almost exclusively empirical. They can be further classified as toxicological and epidemiological. The 
former refer to models derived from observations in controlled experiments, usually with nonhuman 
subjects. The latter refer to models derived from observations over large populations. Health models use 
statistical methods and assumptions that ultimately assume cause and effect. Included in this category 
are models that extrapolate information from non-human subject experiments. Also, physiologically based 
pharmacokinetic models can help predict human toxicity to contaminants through mathematical modeling 
of absorption, distribution, storage, metabolism, and excretion of toxicants.  The output from health 
models is almost always a dose, such as a safe level (for example, reference dose [RfD]), a cancer 
potency index (CPI), or an expected health end point (for example, lethal dose for 50% of the population 
(LD50) or number of asthma cases). There also exist model applications that facilitate the use of the 
statistical methods. 

Model Type Use Additional Information 
Benchmark 
dose model 

Software tool for 
applying a  
variety of 
statistical models 
to analyze dose-
response data 

To estimate risk of pollutant exposure. Models fit to 
dose-response data to determine a benchmark dose 
that is associated with a particular benchmark 
response. 

http://cfpub.epa.gov/ 
ncea/cfm/recordisplay. 
cfm?deid=20167 

Linear 
Cancer 
model 

Statistical 
analysis 
method 

To estimate the risk posed by carcinogenic 
pollutants 

EPA 2000 

Ecological Effects Models 
Ecological effects models, like human health effects models, define relationships between a level of 
pollutant exposure and a particular ecological indicator. Many ecological effects models simulate aquatic 
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environments, and ecological indicators are related directly to environmental concentrations.  Examples 
of ecological effects indicators that have been modeled are: algae blooms, BOD, fish populations, crop 
yields, coast line erosion, lake acidity, and soil salinity. 

Model Type Use Additional Information 
AQUATOX Integrated 

fate and 
effects of 
pollutants in 
aquatic 
environment 

Ecosystem model that predicts the environmental 
fate of chemicals in aquatic ecosystems, as well as 
direct and indirect effects on the resident organisms. 
Potential applications to management decisions 
include water quality criteria and standards, TMDLs, 
and ecological risk assessments of aquatic systems. 

http://www.epa.gov/ 
waterscience/models/ 
aquatox/ 

Hawkins 2005, 
Rashleigh 2007 

BASS Simulates 
fish 
populations 
exposed to 
pollutants 
(mechanistic 

Models dynamic chemical bioconcentration of 
organic pollutants and metals in fish. Estimates are 
being used for ecological risks to fish in addition to 
realistic dietary exposures to humans and wildlife. 

http://www.epa.gov/ 
athens/research/ 
modeling/bass.html 

SERAFM Steady-state 
modeling 
system used 
to predict 
mercury 
concentration 
in wildlife 

Predicts total mercury concentrations in fish and 
speciated mercury concentrations in water and 
sediments. 

http://www.epa.gov/ 
ceampubl/swater/ 
serafm/index.htm 

Knightes 2005 

PATCH Movement of 
invertebrates 
in their 
habitat 

Provides population estimates of territorial terrestrial 
vertebrate species over time, in addition to survival 
and fecundity rates, and orientation of breeding 
sites. 
Determine ecological effects of regulation. 

http://www.epa.gov/ 
wed/pages/models/ 
patch/patchmain.htm 

Lawler et al. 2006 

ECONOMIC IMPACT MODELS 
This category includes a broad group of models that are used in many different aspects of EPA’s 
activities including: rulemaking (regulatory impact assessments), priority setting, enforcement, and 
retrospective analyses. Models that produce a dollar value as output belong in this category. Models can 
be divided into cost models, which may include or exclude behavior responses, and benefit models. The 
former incorporate economic theory on how markets (supply, demand, and pricing) will respond as a 
result of an action.  Economic models are traditionally deterministic, though there is a trend toward 
greater use of uncertainty methods in cost-benefit analysis.  

Model Type Use Additional Information 
ABEL Micro Economic Assess a single firm’s ability to pay compliance costs 

or fees. Estimates claims from defendants that they 
cannot afford to pay for compliance, clean-up or civil 
penalties using information from tax return data and 
cash-flow analysis.  
Used for settlement negotiations. 

http://iaspub.epa.gov/ 
edr/edr_proc_qry. 
navigate?P_LIST_ 
OPTION_CD=CSDIS& 
P_REG_AUTH_ 
IDENTIFIER=1&P_ 
DATA_IDENTIFIER= 
90389&P_VERSION=1 

Nonroad Macro economic Multimarket model to analyze how producers and http://www.epa.gov/ttn/ 
Diesel for impact of the consumers are expected to respond to compliance atw/nsps/cinsps/ 
Economic nonroad diesel costs associated with the rule. Estimates and ci_nsps_eia_reportfinal 
Impact Model emissions stratifies emissions for nonroad equipment. Model forproposal.pdf 
(NDEIM) standards rule can be used to inform State Implementation Plans 

and regulatory analyses. 
BenMAP Noneconomic 

and 
economic 
benefits 
from air quality 

Model that estimates the health benefits associated 
with air quality changes by estimating changes in 
incidences of a wide range of health outcomes and 
then placing an economic value on these reduced 
incidences. 

http://www.epa.gov/ttne 
cas1/benmodels.html 

54 




 

 

  

 

 

 
 
 
 

NONECONOMIC IMPACT MODELS 
Noneconomic impact models evaluate the effects of contaminants on a variety of noneconomic 
parameters, such as on crop yields and buildings. Note that other noneconomic impacts, such as impacts 
on human health or ecosystems, are derived from the human health and ecological effects models 
discussed previously. 

Model Type Use Additional Information 
TDM (Travel 
Demand 
Management) 

Model used to 
evaluate travel 
demand 
management 
strategies 

Evaluates travel demand management strategies to 
determine vehicle-trip reduction effects.  Model used 
to support transit policies including HOV lanes, 
carpooling, telecommuting, and pricing and travel 
subsidies. 

http://www.fhwa.dot.go 
v/environment/cmaqeat/ 
descriptions_tdm_evalua 
tion_model.htm 

CERES-
Wheat 

Crop-growth 
yield model 

Simulates effects of planting density, weather, water, 
soil, and nitrogen on crop growth, development, and 
yield. Predicts management strategies that impact 
crop yield. 

http://nowlin.css.msu.ed 
u/wheat_book/ 

PHREEQE-A Models effects of 
acidification on 
stone 

Simulates the effects of acidic solutions on 
carbonate stone. 

Parkhurst et al. 1990 
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Appendix C: Supplementary Material on Quality Assurance
Planning and Protocols  

This section consists of a series of text boxes meant to supplement concepts and references  made in the  
main body of the document.  They are not meant as a comprehensive discussion on QA practices, and  
each box should be considered as a discrete unit.  Individually, the text boxes provide additional 
background material for specific  sections of the main document.  The complete QA manuals for each  
subject area discussed in this guidance and referred  to below should be consulted for more complete  
information on QA planning and protocols. 

 

Box C1: Background on EPA Quality  System 
The EPA Quality System defined in EPA Order 5360.1 A2, “Policy and Program Requirements for the 
Mandatory Agency-Wide Quality System” (EPA 2000e), covers environmental data produced from models 
as well as “any measurement or information that  environmental processes, location, or conditions;  
ecological or health effects and consequences; or the performance of environmental technology.”  For 
EPA, environmental data include information collected directly from measurements, produced from 
models, and compiled from other sources such as databases and literature.   
 
The EPA Quality System is based on an American National Standard, ANSI 1994.  Consistent with  
minimum specifications of this standard,  §6.a.(7) of EPA Order 5360.1 A2 states that EPA organizations 
will develop a Quality System that includes “approved” Quality Assurance (QA) Project Plans, or  
equivalent documents defined by the  Quality Management Plan, for all applicable projects and tasks 
involving environmental data with review and approval having been made by the EPA QA Manager (or 
authorized representative defined in the Quality Management Plan).  The approval of the QA Project Plan  
containing the specifications for the product(s) and the checks against those specifications (assessments) 
for implementation is an important management control assuring records to avoid fiduciary “waste and 
abuse” (Federal Managers’ Financial Integrity Act of 19829 with annual declarations including
conformance to the EPA Quality System).  The assessments (including peer review) support the product  
acceptance for models and their outputs and approval for use such as  supporting environmental  
management decisions by answering questions, characterizing environmental  processes or  conditions, 
and direct decision support such as economic analyses (process planned in Group D in the Guidance for 
QA Project Plans for Modeling).  EPA’s policies for QA Project Plans are provided in Chapter 5 of EPA’s 
Manual 5360 A1 (EPA 2000e), the EPA Quality Manual for Environmental Programs (EPA 2000f) for in-
house  modeling, and Requirements for Quality Assurance Project Plans  (QA/G5-M) (EPA 2002b) for 
modeling done through extramural agreements (e.g., contracts 48 CFR 46, grants and cooperative 
agreements 40 CFR 30, 31, and 35).  QA requirements must be negotiated and written into Interagency  
Agreements if the project is funded by EPA; if funds are received by EPA, EPA Manual 5360 A1 (EPA 
2000e) applies.  
 
EPA Order 5360.1 A2 also states that EPA organizations’ Quality Systems must include “use of a 
systematic planning approach to develop acceptance or performance criteria for all work covered” and  
“assessment of existing data, when used to support Agency decisions or other secondary purposes, to 
verify that they are of sufficient quantity and adequate quality for their intended use.” 

9 Federal Managers Financial Integrity Act of 1982, P.L. 97-255—(H.R. 1526), September 8, 1982. 
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Box C2: Configuration Tests Specified in the QA Program 
During code verification, the final set of computer  code is scrutinized to ensure that the equations are  
programmed correctly and that sources of error, such as rounding, are minimal.  This process is likely to 
be more extensive for new computer  code.  For existing code, the criteria used for previous verification, if 
known, can be described or cited.  Any additional criteria specific to the modeling project can be  
specified, along with how the criteria were established.  Possible departures from the criteria are  
discussed, along with how the departures can affect the modeling process. 
 
Software code development inspections: An independent person or group other than the author(s) 
examines software requirements, software design, or code to detect faults, programming errors, violations  
of development standards, or other problems.  All errors found are recorded at the time of inspection, with  
later verification that all errors found have been successfully corrected. 
 
Software code performance testing:   Software used to compute model predictions is tested to assess 
its performance relative to specific response times, computer processing usage, run time, convergence to  
solutions, stability of the solution algorithms, absence of terminal  failures, and other quantitative aspects 
of computer operation. 
 
Testing of model modules:  Checks ensure that the computer code for each module is computing 
outputs accurately and within any specific time constraints.  (Modules are different segments or portions  
of the model linked together to obtain the final model prediction.) 
 
Model framework testing:   The full model framework is tested as the ultimate level of integration testing  
to verify that all project-specific requirements have been implemented as intended. 
 
Integration testing:   The computational and transfer interfaces between modules need to allow an  
accurate transfer of information from one module to the next, and  ensure that uncertainties in one module 
are not lost or changed when that information is transferred to the next module.  These tests detect 
unanticipated interactions  between modules and track down their cau se(s).  (Integration test s should be  
designed and applied hierarchically by increasing, as testing proceeds, the number of modules tested and 
the subsystem complexity.)  
 
Regression testing:   All testing performed on the original version of the module or linked modules is 
repeated to detect new “bugs” introduced by changes made in the code to correct a model. 
 
Stress testing (of complex models):   This ensures that the maximum  load (e.g., real-time data  
acquisition and control systems) does not exceed limits.  The stress test should attempt to simulate the  
maximum input, output, and computational load expected during peak usage.  The load can be define d 
quantitatively using criteria such as the frequency of inputs and outputs or the number of computations or  
disk accesses per unit of time. 
 
Acceptance testing:   Certain contractually required testing may be needed before the new model or the  
client accepts model application.  Specific procedures and the criteria for passing the acceptance test are 
listed before  the testing is  conducted.  A stress test  and a thorough evaluation of the user interface is a 
recommended part of the acceptance test. 
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Beta testing of the pre-release hardware/software:   Persons outside the project group use the
software as  they would in normal operation and record any anomalies they encounter or answer
questions provided in a testing protocol by the regulatory program.  The users report these observations  
to the regulatory program or specified developers, who address them before release of the final version. 
 
Reasonableness checks:   These checks involve items like order-of-magnitude, unit, and other checks to  
ensure that the numbers are in the range of what is expected. 
 
Note: This section is adapted from (EPA 2002b). 

 
 

Box C3: Quality Assurance Planning Suggestions for Model Calibration Activities 
 
Information related to objectives and acceptance criteria for calibration activities that generally appear at  
the beginning of this QA Project Plan element includes the following: 
 
Objectives of model calibration: This includes expected accomplishments of the calibration and how 
the predictive quality of the model might be improved as a result of implementing the calibration 
procedures. 
 
Acceptance criteria:  The specific limits, standards, goodness-of-fit, or other criteria on which a model 
will be judged as being properly calibrated (e.g., the percentage difference between reference data values 
from the field or laboratory and predicted results from  the model).  This includes a mention of the types of  
data and other information that will be necessary  to acquire in order to determine that the model is  
properly calibrated (e.g., field data, laboratory data, predictions from other accepted models).  In addition  
to addressing these questions when establishing acceptance criteria, the QA Project Plan can document  
the likely consequences (e.g., incorrect decision making) of selecting data that do not satisfy one or more  
of these areas (e.g., are non-representative, are inaccurate), as w ell as procedures in  place to minimize  
the likelihood of selecting such data. 
 
Justifying the calibration approach and acceptance criteria:   Each time a model is calibrated, it is 
potentially altered.  Therefore, it is important that the different calibrations, the approaches taken (e.g.,  
qualitative versus quantitative), and their acceptance criteria are properly justified.  This justification can 
refer to the overall quality of the standards being used as  a reference or to the quality of the input data  
(e.g., whether data are sufficient for statistical tests to achieve desired levels of accuracy). 
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Box C4: Definition of Quality  
As defined by EPA’s Information Quality Guidelines  (EPA 2002a), quality is a broad term that includes
notions of integrity, utility, and objectivity.  Integrity refers to the protection of information from
unauthorized access or revision to ensure that it is not compromised through corruption or falsification. In  
the context of environmental models, integrity is often most relevant to protection of code from
unauthorized or inappropriate manipulation (see Box 2).  Utility refers to the usefulness of the information  
to the intended users. The utility of modeling projects is aided by the implementation of a systematic
planning approach that includes the development of acceptance or performance criteria (see Box 1).
Objectivity  involves two distinct elements, presentation and substance.  Objectivity includes whether
disseminated information is being presented in an accurate, clear, complete and unbiased manner. It also 
involves a focus on ascertaining accurate, reliable, and unbiased information. 
 
EPA's five general assessment factors (EPA 2003b) for evaluating the quality and relevance of scientific 
and technical information supporting Agency actions are: soundness, applicability and utility, clarity and 
completeness, uncertainty and variability, and evaluation and review.  Soundness refers to the extent to  
which a model is appropriate for its intended application and is a reasonable representation of reality.
Applicability and utility describe the extent to which the information is relevant and appropriate for the
Agency’s intended use.  Clarity and completeness refer to documentation of the data, assumptions,
methods, quality controls, and analysis employed  to generate the model outputs.  Uncertainty and
variability highlight the extent to which limitations in  knowledge and information and natural randomness  
in input data and models are evaluated  and characterized. Evaluation and review evaluate the extent of 
independent application, replication, evaluation, validation, and peer review of the information or of the
procedures, measures, methods, or models employed to generate the information. 
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Appendix D: Best Practices for Model Evaluation 
D.1 Introduction 

This appendix presents a practical guide to the best practices for model evaluation (please see Section  
4.1 for descriptions of these practices).  These best practices are: 
 
•  Scientific peer review (Section 4.1.1) 
•  Quality assurance project planning (Section 4.1.2) 
•  Corroboration (Section 4.1.3) 
•  Sensitivity analysis (Section 4.1.3) 
•  Uncertainty analysis (Section 4.1.3) 

The objective of model evaluation is to determine whether a model is of sufficient quality to inform a 
regulatory decision.  For each of these best practices, this appendix provides a conceptual overview for 
model evaluation and introduces a suite of “tools” that can be used in partial fulfillment of the best 
practice.  The appropriate use of these tools is discussed and citations to primary references are 
provided.  Users are encouraged to obtain more complete information about tools of interest, including 
their theoretical basis, details of their computational methods, and the availability of software. 

Figure D.1.1 provides an overview of the steps in the modeling process that are discussed in this 
guidance.  Items in bold in the figure, including peer review, model corroboration, uncertainty analysis, 
and sensitivity analysis, are discussed in this section on model evaluation.  
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Conceptual 
Model 

Mechanistic 
Model 

Empirical 
Model 

Code 
Verification 

Corroborated 
Model** 

Sensitivity 
Analysis 

Uncertainty 
Analysis 

Model 
Results 

Model Evaluation 

Model Development Model Application 

Observation and Measurement with 
Data Quality Assessment 

Dataset 1 Dataset 2 Dataset 3…n 

Environmental System 

User 
Applications 

User 
Feedback Parameterized 

Model* 

Peer review is an ongoing process that should be 
considered at all steps in the modeling process. 

Figure D.1.1. The modeling process. 
* In some disciplines parameterization may include, or be referred to as, calibration. 
** Qualitative and/or quantitative corroboration should be performed when necessary. 
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D.2 Scientific Peer Review 

EPA policy states that major science-based and technical products related to Agency decisions should 
normally be peer-reviewed.  Agency managers determine and are accountable for the decision whether to 
employ peer review in particular instances and, if so, its character, scope, and timing.  EPA has published 
guidance for program managers responsible for implementing the peer review process for models (Beck 
et al. 1994). This guidance discusses peer review mechanisms, the relationship of external peer review to 
the process of environmental regulatory model development and application, documentation of the peer 
review process, and specific elements of what could be covered in an external peer review of model 
development and application. 

The general process for external peer review of models is as follows (Beck et al. 1994, Press 1992): 

•	 Step 0: The program manager within the originating office (AA-ship or Region) identifies elements of 
the regulatory process that would benefit from the use of environmental models. A review/solicitation 
of currently available models and related research should be conducted.  If it is concluded that the 
development of a new model is necessary, a research/development work plan is prepared. 

•	 Step 0b (optional): The program manager may consider internal and/or external peer review of the 
research/development concepts to determine whether they are of sufficient merit and whether the 
model is likely to achieve the stated purpose. 

•	 Step 1: The originating office develops a new or revised model or evaluates the possible novel 
application of a model developed for a different purpose. 

•	 Step 1b (optional): The program manager may consider internal and/or external peer review of the 
technical or theoretical basis prior to final development, revision, or application at this stage.  For 
model development, this review should evaluate the stated application niche. 

•	 Step 2: Initial Agency-wide (internal) peer review/consultation of model development and/or proposed 
application may be undertaken by the developing originating office. Model design, default 
parameters, etc., and/or intended application are revised (if necessary) based on consideration of 
internal peer review comments. 

•	 Step 3: The origination office considers external peer review.  Model design, default parameters, etc., 
and/or intended application are revised (if necessary) based on consideration of internal peer review 
comments. 

•	 Step 4: Final Agency-wide evaluation/consultation may be implemented by the originating office. 
This step should consist of consideration of external peer review comments and documentation of the 
Agency’s response to scientific/technical issues. 

(Note: Steps 2 and 4 are relevant when there is either an internal Agency standing or an ad hoc peer 
review committee or process). 
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Box D1:  Elements of External Peer Review  for Environmental Regulatory Models (Box 2-4 from NRC’s Models 
in Environmental Regulatory Decision Making) 
Model Purpose/Objectives 
�  What is the regulatory context in which the model will be used and what broad scientific question is the model 

intended to answer? 
�  What is the model's application niche? 
�  What are the model's strengths and weaknesses? 
Major Defining and Limiting Considerations 
�  Which processes are characterized by the model?  
�  What are the important temporal and spatial scales?  
�  What is the level of aggregation? 
Theoretical Basis for the Model — formulating the basis for problem solution  
�  What algorithms are used within the model and how  were they  derived?  
�  What is the method of solution?  
�  What are the shortcomings of the modeling approach?  
Parameter Estimation 
�  What methods and data were used for parameter estimation?   
�  What methods were used to estimate parameters for which there were  no data?  
�  What are the boundary conditions and are they  appropriate? 
Data Quality/Quantity 
Questions related to model design include: 
�  What data were utilized in the design of the model? 
�  How can the adequacy of the data be defined taking into account the regulatory  objectives of the model? 
Questions related to model application include: 
�  To  what extent are these data available and what are the key  data gaps? 
�  Do additional data need to be collected and for what purpose? 
Key Assumptions  
�  What are the key  assumptions?  
�  What is the basis for each key assumption and what is the range of possible alternatives?  
�  How sensitive is the model toward modifying key assumptions? 
Model Performance Measures   
�  What criteria have been used to assess model performance?   
�  Did the data bases used in the performance evaluation provide an adequate test of the model?  
�  How does the model perform relative to other models in this application niche? 
Model Documentation and Users Guide  
�  Does the documentation cover model applicability and limitations, data input, and interpretation of results? 
Retrospective  
�  Does the model satisfy its intended scientific and regulatory objectives?  
�  How robust are the model predictions?  
�  How  well does the model output quantify the overall uncertainty? 
 
Source: EPA 1994b. 
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D.3 Quality Assurance Project Planning 

 

 
 
 
 

 
 
 

 

 

 

 

Box D2: Quality Assurance Planning and Data Acceptance Criteria 
The QA Project Plan needs to address four issues regarding information on how non-direct
measurements are acquired and used on the project (EPA 2002d):  
 
•  The need and intended use of each type of data or information to be acquired. 
•  How the data will be identified or acquired, and expected sources of these data. 
•  The method of determining the underlying quality of the data. 
•  The criteria established for determining whether the level of quality for a given set of data is  

acceptable for use on the project. 
 

Acceptance criteria for individual data values  generally address issues such as the following: 
 
Representativeness:  Were the data collected from a population sufficiently similar to the
population of interest and the model-specified population boundaries?  Were the sampling and
analytical methods used to generate the collected data acceptable to this project?  How will
potentially confounding effects in the data (e.g., season, time of day, location, and scale
incompatibilities) be addressed so that these effects do not unduly impact the model output? 
 
Bias:   Would any characteristics of the dataset directly  impact the model output (e.g., unduly high  
or low process rates)?  For example, has bias  in analysis results been documented?  Is there
sufficient information to estimate and correct bias?  If using data to develop probabilistic
distributions, are there adequate data in the upper and lower extremes of the tails to allow for
unbiased probabilistic estimates? 
 
Precision:   How is the spread in the results estimated?  Is the estimate of variability sufficiently 
small to meet the uncertainty objectives of the modeling project as stated in Element A7 (Quality 
Objectives and Criteria for Model Inputs/Outputs) (e.g., adequate to provide a frequency of
distribution)?  
 
Qualifiers:   Have the data been evaluated in a manner that permits logical decisions on the
data’s applicability to the current project?  Is the system of qualifying or flagging data adequately 
documented to allow data from different sources to be used on the same project (e.g., distinguish  
actual measurements from estimated values, note differences in detection limits)? 
 
Summarization:  Is the data summarization process clear and sufficiently consistent with the
goals of this project (e.g., distinguish averages or  statistically transformed values from unaltered  
measurement values)?  Ideally, processing and transformation equations will be made available 
so that their underlying  assumptions can be evaluated against the objectives of the current
project.  

D.4 Corroboration 

In this guidance, “corroboration” is defined as all quantitative and qualitative methods for evaluating the 
degree to which a model corresponds to reality.  In practical terms, it is the process of “confronting 
models with data” (Hilborn and Mangel 1997).  In some disciplines, this process has been referred to as 
validation. In general, the term “corroboration” is preferred because it implies a claim of usefulness and 
not truth. 

Corroboration is used to understand how consistent the model is with data.  However, uncertainty and 
variability affect how accurately both models and data represent reality because both models and data 
(observations) are approximations of some system.  Thus, to conduct corroboration meaningfully (i.e., as 
a tool to assess how well a model represents the system being modeled), this process should begin by 
characterizing the uncertainty and variability in the corroboration data.  As discussed in Section 4.1.3.1, 
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variability stems from the natural randomness or stochasticity of natural systems and can be better 
captured or characterized in a model but not reduced.  In contrast, uncertainty can be minimized with 
improvements in model structure (framework), improved measurement and analytical techniques, and 
more comprehensive data for the system being studied.  Hence, even a "perfect" model (that contains no 
measurement error and predicts the correct ensemble average) may deviate from observed field 
measurements at a given time. 

Depending on the type (qualitative and/or quantitative) and availability of data, corroboration can involve 
hypothesis testing and/or estimates of the likelihood of different model outcomes. 

D.4.1 Qualitative Corroboration  
Qualitative model corroboration involves expert judgment and tests of intuitive behavior.  This type of  
corroboration uses “knowledge” of the behavior of the system in question, but is  not formalized or  
statistics-based.  Expert knowledge can establish model reliability through consensus and consistency. 
For example, an expert panel consisting of model developers and stakeholders could be convened to  
determine whether there is agreement that the methods and outputs of a model are consistent with  
processes, standards, and results used in other models.  Expert judgment can also establish model  
credibility by determining if model-predicted behavior of a system agrees with best-available  
understanding of internal processes and functions. 
 
D.4.2 Quantitative Methods  
When data are available, model corroboration may involve comparing model predictions to independent 
empirical observations to investigate how well a model's description of the world fits the observational  
data. This involves using both statistical measures for goodness of fit and numerical procedures to  
facilitate these calculations.  The can be done graphically or by calculating various statistical measures of 
fit of a model’s results to data.   
 
Recall that a model’s application niche is the set of conditions under which the use of a model is  
scientifically defensible (Section 5.2.3); it is the domain of a model’s intended applicability. If the model  
being evaluated purports to estimate an average value across the entire system, then one method to deal 
with corroboration data is to stratify model results and observed data into “regimes,” subsets of data 
within which system processes operate similarly.  Corroboration is then performed by comparing the  
average of model estimates and observed data within each regime (ASTM 2000). 
 
D.4.2.1 Graphical Methods  
Graphical methods can be used to compare the distribution of model outputs to independent 
observations.  The degree to which these two distributions overlap, and their respective shapes, provide 
an indication of model performance with respect to the data.  Alternately, the differences between  
observed and predicted data pairs can be plotted and the resulting probability density function (PDF) 
used to indicate precisions and bias.  Graphical methods for model corroboration can be used to indicate  
bias, skewness, and kurtosis of model results.  Skewness indicates the relative precision of model results, 
while bias is a reflection of accuracy.  Kurtosis refers to the amplitude of the PDF. 
 
D.4.2.2 Deviance Measures  
Methods for calculating model bias: 
Mean error calculates the average deviation between models and data (e = model-data) by dividing the 
sum of errors (Σe) by total number of data points compared (m). 
 

ΣeMeanError =   (in original measurement units) 
m 

 
Similarly, mean %  error provides a unit-less measure of model bias: 
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Σe / sMeanError(%) = *100 , 
m 

where "s" is the sample or observational data in original units. 

Methods for calculating bias and precision: 
Mean square error (MSE): 

Σe2 

MSE = 
m 

(Large deviations in any single data pair (model-data) can dominate this metric.) 

Mean absolute error: 
Σ e

MeanAbsError = 
m 

D.4.2.3 Statistical Tests 
A more formal hypothesis testing procedure can also be used for model corroboration.  In such cases, a 
test is performed to determine if the model outputs are statistically significantly different from the empirical 
data. Important considerations in these tests are the probability of making type I and type II errors and 
the shape of the data distributions, as most of these metrics assume the data are distributed normally. 
The test-statistic used should also be based on the number of data-pairs (observed and predicted) 
available. 

There are a number of comprehensive texts that may help analysts determine the appropriate statistical 
and numerical procedures for conducting model corroboration.  These include: 

•	  Efron, B., and R. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapman and Hall. 
•	  Gelman, A.J.B., H.S. Carlin, and D.B. Rubin. 1995.  Bayesian Data Analysis. New York: Chapman  

and Hall. 
•	  McCullagh, P., and J.A. Nelder. 1989. Generalized Linear Models. New York: Chapman and Hall.  
•	  Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1986.  Numerical Recipes. 

Cambridge, UK: Cambridge University Press. 
•	  Snedecor, G.W., and W.G. Cochran. 1989. Statistical Methods. Eighth Ed. Iowa State University  

Press.  
 
D.4.3 Evaluating Multiple Models 

Models are metaphorical (albeit sometimes accurate) descriptions of nature, and 
there can never be a “correct”  model.  There may be a “best”  model, which is 
more consistent with the data than any of its competitors, or  several models may 
be contenders because each is consistent in some way with the data and none 
clearly dominates the others.  It is the job of the ecological detective to determine 
the support that the data offer for each  competing model or hypothesis.    
— Hillborn and Mangel 1997, Ecological Detective  

 
In the simplest sense, a first cut of model performance is obtained by examining which model minimizes 
the sum of squares (SSq) between observed and model-predicted data. 
 

SSq = ∑ ( pred − obs)2  
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The SSq is equal to the squared differences between model-predicted values and observational values. 
If data are used to fit models and estimate parameters, the fit will automatically improve with each higher-
order model — e.g., simple linear model, y = a + bX, vs. a polynomial model, y = a + bX + cX2 . 

It is therefore useful to apply a penalty for additional parameters to determine if the improvement in model 
performance (minimizing SSq deviation) justifies an increase in model complexity.  The question is 
essential whether the decrease in the sum of squares is statistically significant. 

The SSq is best applied when comparing several models using a single dataset.  However, if several 
datasets are available the Normalized Mean Square Error (NMSE) is typically a better statistic, as it is 
normalized to the product of the means of the observed and predicted values (see discussion and 
references, Section D.4.4.4). 

D.4.4 An Example Protocol for Selecting a Set of Best Performing Models 

During the development phase of an air quality dispersion model and in subsequent upgrades, model  
performance is constantly  evaluated.  These evaluations generally compare simulation  results using  
simple methods that do not account for the fact that models only predict a portion of the variability seen in  
the observations.  To fill a part of this void, the U.S. Environmental Protection Agency (EPA) developed a 
standard that has been  adopted by the ASTM International, designation D 6589–00 for Statistical  
Evaluation of Atmospheric Dispersion  Model Performance (ASTM 2000).  The following discussion 
summarizes some of the issues discussed in D 6589. 
 
D.4.4.1 Define Evaluation Objectives  
Performing a statistical model evaluation involves defining those evaluation objectives (features or 
characteristics) within the pattern of  observed and modeled  concentration values that are of interest to  
compare.  As yet, no one feature or characteristic has been  found that can be defined within a 
concentration pattern that will fully test a model’s  performance.  For instance, the maximum surface 
concentration may appear unbiased through a compensation of errors in estimating the lateral extent of 
the dispersing material and in estimating the vertical extent of the dispersing material.  Adding into  
consideration that other biases may exist (e.g., in  treatment of the chemical and removal processes 
during transport, in estimating buoyant plume rise, in accounting for wind direction changes with height, in 
accounting for penetration  of material into layers above the current mixing depth, in systematic variation 
in all of these biases as a function of atmospheric stability), one can appreciate  that there are many ways 
that a model can falsely give the appearance of good performance.  
 
In principle, modeling diffusion involves characterizing the size and shape of the volume into which the  
material is dispersing as well as the distribution of the material within this volume.  Volumes have three 
dimensions, so a model evaluation will be more complete if it tests the model’s ability to characterize  
diffusion along more than one of these dimensions.   
 
D.4.4.2 Define Evaluation Procedures  
Having selected evaluation objectives for comparison, the next step is to establish an evaluation  
procedure (or series of procedures), which defines how each evaluation objective  will be derived from the 
available information.  Development of statistical model evaluation procedures begins with technical  
definitions of the terminology used in the goal statement.  In the following discussion, we use a plume 
dispersion model example, but the thought process is valid as well for regional photochemical grid 
models. 
 
Suppose the evaluation goal is to test models’ ability to replicate the average centerline concentration as  
a function of transport downwind and as a function of atmospheric stability.  Several questions must be 
answered to achieve this goal: What is an ”average cente rline concentration”? What is ”transport 
downwind”? How will ”stability” be defined?   
 
What questions arise in defining the average centerline  concentration?  Given a  sampling arc of 
concentration values, it is ne cessary to  decide whether the centerline concentration is the maximum value  
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seen anywhere along the arc or that seen near the center of mass of the observed lateral concentration 
distribution.  If one chooses the latter concept, one needs a definition of how ”near” the center of mass 
one has to be, to be representative of a centerline concentration value.  One might decide to select all 
values within a specific range (nearness to the center of mass).  In such a case, either a definition or a 
procedure will be needed to define how this specific range will be determined. A decision will have to be 
made on the treatment of observed zero (and near measurement threshold) concentrations.  To discard 
such values is to say that low concentrations cannot occur near a plume’s center of mass, which is a 
dubious assumption.  One might test to see if conclusions reached regarding the “best performing model” 
are sensitive to the decision made on the treatment of near-zero concentrations. 

What questions arise in defining “transport downwind”? During near-calm wind conditions, when 
transport may have favored more than one direction over the sampling period, ”downwind” is not well 
described by one direction.  If plume models are being tested, one might exclude near-calm conditions, 
since plume models are not meant to provide meaningful results during such conditions.  If puff models or 
grid models are being tested, one might sort the near-calm cases into a special regime for analysis.   

What questions arise in defining “stability”?  For surface releases, surface-layer Monin-Obukhov length, L, 
has been found to adequately define stability effects; for elevated releases, Zi/L, where Zi is the mixing 
depth, has been found to be a useful parameter for describing stability effects.  Each model likely has its 
own meteorological processor.  It is likely that different processors will have different values for L and Zi 
for each of the evaluation cases.  There is no one best way to deal with this problem.  One solution might 
be to sort the data into regimes using each of the models’ input values, and see if the conclusions 
reached as to best performing model are affected.   

What questions arise if one is grouping data together?  If one is grouping data together for which the 
emission rates are different, one might choose to resolve this difference by normalizing the concentration 
values by dividing by the respective emission rates.  To divide by the emission rate, either one has a 
constant emission rate over the entire release or the downwind transport is sufficiently obvious that one 
can compute an emission rate, based on travel time, that is appropriate for each downwind distance. 

Characterizing the plume transport direction is highly uncertain, even with meteorological data collected 
specific for the purpose. Thus, we expect that the simulated position of the plume will not overlap the 
observed position of the plume.  One must decide how to compare a feature (or characteristic) in a 
concentration pattern, when uncertainties in transport direction are large.  Will the observed and modeled 
patterns be shifted, and if so, in what manner?   

This discussion is not meant to be exhaustive, but to be illustrative of how the thought process might 
evolve. When terms are defined, other questions arise that — when resolved — eventually produce an 
analysis that will compute the evaluation objective from the available data.  There likely is more than one 
answer to the questions that develop.  This may cause different people to develop different objectives and 
procedures for the same goal.  If the same set of models is chosen as the best-performing, regardless of 
which path is chosen, one can likely be assured that the conclusions reached are robust. 

D.4.4.3 Define Trends in Modeling Bias 
In this discussion, references to observed and modeled values refer to the observed and model 
evaluation objectives (e.g., regime averages).  A plot of the observed and modeled values as a function of 
one of the model input parameters is a direct means for detecting model bias.  Such comparison has 
been recommended and employed in a variety of investigations, e.g., Fox (1981), Weil et al. (1992), 
Hanna (1993)  In some cases the comparison is the ratio formed by dividing the modeled value by the 
observed value, plotted as a function of one or more of the model input parameters.  If the data have 
been stratified into regimes, one can also display the standard error estimates on the respective modeled 
and observed regime averages.  If the respective averages are encompassed by the error bars (typically 
plus and minus two times the standard error estimates), one can assume the differences are not 
significant.  As Hanna [11] describes, this a “seductive” inference.  Procedures to provide a robust 
assessment of the significance of the differences are defined in ASTM D 6589 (ASTM 2000). 
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D.4.4.4 Summary of Performance  
As an example of overall summary of performance,  we will discuss a procedure constructed using the 
scheme introduced by Cox and Tikvart (1990) as a template.  The design for statistically summarizing 
model performance over several regimes is envisioned as a five-step procedure.  
 
1. 	 Form a replicate sample using concurrent sampling of the observed and modeled values for each  

regime.  Concurrent sampling associates results from all models with each observed value, so that  
selection of an observed value automatically selects the corresponding estimates by all models.   

2. 	 Compute the average of observed and modeled values for each regime. 
3. 	 Compute the  normalized mean square error, NMSE, using the computed regime averages, and store  

the value of the NMSE computed for this pass of the bootstrap sampling.   
4. 	 Repeat steps 1 through 3 for all bootstrap sampling passes (typically of order 500).   
5. 	 Implement the procedure  described in ASTM D 6589 (ASTM 2000) to detect which model has the  

lowest computed NMSE value (call this the “base” model) and which models have NMSE  values that 
are significantly different from the ”base” model. 

In the Cox and Tikvart (1990) analysis, the data were sorted into regimes (defined in terms of Pasquill 
stability category and low/high wind speed classes), and bootstrap sampling was used to develop 
standard error estimates on the comparisons.  The performance measure was the robust highest 
concentration (computed from the raw observed cumulative frequency distribution), which is a comparison 
of the highest concentration values (maxima), which most models do not contain the physics to simulate. 
This procedure can be improved if intensive field data are used and the performance measure is the 
NMSE computed from the modeled and observed regime averages of centerline concentration values as 
a function of stability along each downwind arc, where each regime is a particular distance downwind for 
a defined stability range. 

The data demands are much greater for using regime averages than for using individual concentrations. 
Procedures that analyze groups (regimes) of data include intensive tracer field studies, with a dense 
receptor network, and many experiments.  Whereas, Cox and Tikvart (1990) devised their analysis to 
make use of very sparse receptor networks having one or more years of sampling results.  With dense 
receptor networks, attempts can be made to compare average modeled and ”observed” centerline 
concentration values, but only a few of these experiments have sufficient data to allow stratification of the 
data into regimes for analysis.  With sparse receptor networks, there are more data for analysis, but there 
is insufficient information to define the observed maxima relative to the dispersing plume’s center of 
mass. Thus, there is uncertainty as to whether or not the observed maxima are representative of 
centerline concentration values.  It is not obvious that the average of the n (say 25) observed maximum 
hourly concentration values (for a particular distance downwind and narrowly defined stability range) is 
the ensemble average centerline concentration the model is predicting.  In fact, one might anticipate that 
the average of the n maximum concentration values is likely to be higher than the ensemble average of 
the centerline concentration.  Thus the testing procedure outlined by Cox and Tikvart (1990) may favor 
selection of poorly formed models that routinely underestimate the lateral diffusion (and thereby 
overestimate the plume centerline concentration).  This in turn, may bias such models’ ability to 
characterize concentration patterns for longer averaging times.   

It is therefore concluded that once a set of “best-performing models” has been selected from an 
evaluation using intensive field data that tests a model’s ability to predict the average characteristics to be 
seen in the observed concentration patterns, evaluations using sparse networks are seen as useful 
extensions to further explore the performance of well-formulated models for other environs and purposes. 

D.5 Sensitivity Analysis 
This section provides a broad overview of uncertainty and sensitivity analyses and introduces various 
methods used to conduct the latter. A table at the end of this section summarizes these methods’ primary 
features and citations to additional resources for computational detail. 

69 




 

 
  

 
  

 
 

 

 

 

 
  

 
 
  

  

 
 

 

  
 

  
 

 
 

 
 

 
 

  

 

D.5.1 Introducing Sensitivity Analyses and Uncertainty Analysis 

A model approximates reality in the face of scientific uncertainties.  Section 4.1.3.1 identifies and defines 
various sources of model uncertainty.  External peer reviewers of EPA models have consistently 
recommended that EPA communicate this uncertainty through uncertainty analysis and sensitivity 
analysis, two related disciplines. Uncertainty analysis investigates the effects of lack of knowledge or 
potential errors of model inputs (e.g., the “uncertainty” associated with parameter values); when 
combined with sensitivity analysis, it allows a model user to be more informed about the confidence that 
can be placed in model results.  Sensitivity analysis measures the effect of changes in input values or 
assumptions (including boundaries and model functional form) on the outputs (Morgan and Henrion 
1990); it is the study of how uncertainty in a model output can be systematically apportioned to different 
sources of uncertainty in the model input (Beck et al. 1994).  By investigating the “relative sensitivity” of 
model parameters, a user can become knowledgeable of the relative importance of parameters in the 
model. 

Consider a model represented as a function f, with inputs x1 and x2, and with output y, such that y = 
f(x1,x2). Figure D.5.1 schematically depicts how uncertainty analysis and sensitivity analysis would be 
conducted for this model. Uncertainty analysis would be conducted by determining how y responds to 
variation in inputs x1 and x2, the graphic depiction of which is referred to as the model’s response surface. 
Sensitivity analysis would be conducted by apportioning the respective contributions of x1 and x2 to 
changes in y. The schematic should not be construed to imply that uncertainty analysis and sensitivity 
analysis are sequential events. Rather, they are generally conducted by trial and error, with each type of 
analysis informing the other. Indeed, in practice, the distinction between these two related disciplines may 
be irrelevant. For purposes of clarity, the remainder of this appendix will refer exclusively to sensitivity 
analysis. 

Figure D.5.1. Uncertainty and sensitivity analyses. Uncertainty analysis investigates the effects of lack of 
knowledge or potential errors of model inputs. Sensitivity analysis evaluates the respective contributions 
of inputs x1 and x2 to output y. 

D.5.2 Sensitivity Analysis and Computational Complexity 
Choosing the appropriate uncertainty analysis/sensitivity analysis method is often a matter of trading off 
between the amount of information one wants from the analyses and the computational difficulties of the 
analyses. These computational difficulties are often inversely related to the number of assumptions one is 
willing or able to make about the shape of a model’s response surface. 

Consider once again a model represented as a function f, with inputs x1 and x2 and with output y, such 
that y = f(x1,x2). Sensitivity measures how output changes with respect to an input. This is a 
straightforward enough procedure with differential analysis if the analyst: 
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•	  Can assume that the model’s response surface is a hyperplane, as in Figure D.5.2(1);  
•	  Accepts that the results apply only to specific points on the response surface and that these points 

are monotonic first order, as in Figure D.5.2 (2);10 or 
•	  Is unconcerned about interactions among the input variables. 

Otherwise, sensitivity analysis may be more appropriately conducted using more intensive computational 
methods. 

 

 
 

  

 
(1) 	(2)

Figure D.5.2.  It’s hyperplane and simple.  (1) A model response surface that is a hyperplane can 
simplify sensitivity analysis computations. (2) The same computations can also be used for other 
response surfaces, but only as approximations around a single locus. 

This guidance suggests that, depending on assumptions underlying the model, the analyst should use 
non-intensive sensitivity analysis techniques to initially identify those inputs that generate the most 
sensitivity, then apply more intensive methods to this smaller subset of inputs.  It may therefore be useful 
to categorize the various sensitivity analysis techniques into methods that (a) can be quickly used to 
screen for the more important input factors; (b) are based on differential analyses; (c) are based on 
sampling; and (d) are based on variance methods.  

D.5.3 Screening Tools 

D.5.3.1 Tools That Require No Model Runs 
 
Cullen and Frey (1999) suggest that summary statistics measuring input uncertainty can serve as
  
preliminary screening tools without additional model runs (and if the models are simple and linear), 

indicating proportionate contributions to output uncertainty: 

 
•	  Coefficient of variation. The coefficient of variation is the standard deviation normalized to the mean  

(σ/μ) in order to reduce  the possibility that inputs that take on large values are given undue 
importance. 

•	  Gaussian approximation. Another approach to apportioning input variance is Gaussian  
approximation. Using this  method, the variance of a model’s output is estimated as the sum of the 
variances of the inputs (for additive models) or the sum of the variances of the log-transformed inputs 
(for multiplicative models), weighted by the squares on any constants which may be multiplied by the  
inputs as they occur in the model.  

 
D.5.3.2 Scatterplots  
Cullen and Frey (1999) suggest that a high correlation between an input and an output variable may  
indicate substantial dependence of the variation in output and the variation of the input. A simple, visual  

                                                 
10 Related to this issue are the terms “local sensitivity analysis” and “global sensitivity analysis.” The former refers 
to sensitivity analysis conducted around a nominal point of the response  surface, while the latter refers to sensitivity 
analysis across the entire surface. 
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assessment of the influence of an input on the output is therefore possible using scatterplots, with each 
plot posing a selected input against the output, as in Figure D.5.3. 

Figure D.5.3. Correlation as indication of input effect. The high correlation between the input  
variable area  and the output variable time (holding all other variables fixed) is an indication of  
the possible effect of area’s variation on the output. 

 
D.5.3.3 Morris’s OAT  
The key concept underlying one-at-a-time (OAT) sensitivity analyses is to choose a base case of input  
values and to perturb each input variable by a given percentage away from the base value while holding  
all other input variables  constant. Most OAT sensitivity analysis methods yield local measures of  
sensitivity (see footnote 9) that depend on the choice of base case values. To  avoid this bias, Saltelli et 
al. (2000b) recommend using Morris’s OAT for screening purposes because it is a global sensitivity 
analysis method — it entails  computing a number of local measures  (randomly extracted across the input  
space) and then taking their average.  
 
Morris’s OAT provides a measure of the importance of an input factor in generating output variation, and 
while it does not quantify interaction effects, it does provide an indication of the presence of interaction. 
Figure D.5.4 presents the results that one would expect to obtain from applying Morris’s OAT (Cossarini  
et al. 2002). Computational methods for this technique are described in Saltelli et al. 2000b. 
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Figure D.5.4.  An application of Morris’s OAT. Cossarini et al. (2002) investigated the influence
 
of various ecological factors on energy flow through a food web. Their sensitivity analysis 

indicated that maximum bacteria growth and bacteria mortality (μbac and Kmbac, respectively)
 
have the largest (and opposite) effects on energy flow, as indicated by their values on the 

horizontal axis. These effects, as indicated by their values on the vertical axis, resulted from 

interactions with other factors.
 

D.5.4  Methods Based on Differential Analysis 
As noted previously, differential analyses may be used to analyze sensitivity if the analyst is willing either 
to assume that the model  response surface is hyperplanar or to accept that the  sensitivity analysis results 
are local and that they are based on hyperplanar approximations tangent to the response surface at the 
nominal scenario (Morgan and Henrion 1990; Saltelli et al. 2000b).  
 
Differential analyses entail four steps. First, select base values  and ranges for input factors. Second, 
using these input base values, develop a Taylor series approximation to the output. Third, estimate  
uncertainty in output in terms of its expected value and variance using variance propagation techniques. 
Finally, use the Taylor  series approximations to estimate the importance of individual input factors (Saltelli 
et al. 2000b). Computational methods for this technique are described in Morgan and Henrion 1990. 
 
D.5.5  Methods Based on Sampling 
One approach to estimating the impact of input uncertainties is to repeatedly run a model using randomly  
sampled values from the input space. The most well-known method using this approach is Monte Carlo 
analysis. In a Monte Carlo  simulation, a model is  run repeatedly. With each run, different input values are  
drawn randomly from the probability distribution functions of each input, thereby generating multiple  
output values (Morgan and Henrion 1990; Cullen and Frey 1999). One can view a Monte Carlo simulation  
as a process through which multiple scenarios generate multiple output values; although each execution  
of the model run is deterministic, the set of output values may be represented as a cumulative distribution  
function and summarized using statistical measures (Cullen and Frey 1999). 

 
EPA proposes several best principles of good practice for the conduct of Monte Carlo simulations (EPA 
1997). They include the following: 
 
• 	 Conduct preliminary sensitivity analyses to identify significant model components and input variables  

that make important contributions to model uncertainty. 
•	  When deciding upon a probability distribution function (PDF) for input variables, consider the 

following questions: Is there any mechanistic basis for choosing  a distributional family? Is the PDF 
likely to be dictated by physical, biological, or other properties  and mechanisms? Is the variable  
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discrete or  continuous? What are the bounds of the variable? Is the PDF symmetric or skewed, and if 
skewed, in which direction?  

• 	 Base the PDF on empirical, representative data. 
• 	 If expert judgment is used  as the basis for the PDF, document explicitly the reasoning underlying this  

opinion. 
• 	 Discuss the  presence or  absence of covariance among the input variables, which can significantly 

affect the output. 
 
The preceding points merely summarize some of the main points raised in EPA’s Guidance on Monte 
Carlo Analysis. That document should be consulted for more detailed guidance.  Conducting Monte Carlo  
analysis may be problematic for models containing a large number of input variables. Fortunately, there  
are several approaches to dealing with this problem: 
 
•	  Brute force approach. One approach is to increase sheer computing power. For example, EPA’s  

ORD is developing a Java-based tool that facilitates Monte Carlo analyses across a cluster of PCs by  
harnessing the computing power of multiple workstations to conduct multiple runs for a complex 
model (Babendreier and Castleton 2002).  

•	  Smaller, structured trials. The value of Monte Carlo lies not in the randomness of sampling, but in  
achieving representative properties of sets of points in the input space. Therefore, rather than  
sampling data from entire input space, computations may be through stratified sampling by dividing  
the input sample space into strata and  sampling from within each stratum. A widely used method for 
stratified sampling is Latin hypercube sampling, comprehensively described in Cullen and Frey 1999. 

• 	 Response surface model surrogate.   The analyst may also choose to conduct Monte Carlo not on the 
complex model directly, but rather on a response surface representation of it. The latter is  a simplified 
representation of the relationship between a selected number of model outputs and a selected  
number of model inputs, with all other model inputs held at fixed values (Morgan and Henrion 1990;  
Saltelli et al. 2000b). 

 
D.5.6  Methods Based on Variance 
Consider once again a model represented as a function f, with inputs  x1 and x2 and with output y,  such 
that y = f(x1,x2). The input variables  are affected by uncertainties and may take on any number of possible  
values. Let X denote an input vector randomly chosen from among all possible values for x1  and  x2. The  
output y for a given X can also be seen as a realization of a random variable Y. Let E(Y│X) denote the 
expectation of Y conditional on a fixed value of X. If the total variation in y is matched by the variability in 
E(Y│X) as x1  is allowed to vary, this is an indication that variation in  x1  significantly affects y.  
 
The variance-based approaches to sensitivity analysis are based on the estimation of what fraction of  
total variation of y is attributable to variability in E (Y│X) as a subset of input factors are allowed to vary. 
Three methods for computing this estimation (correlation ratio, Sobol, and Fourier amplitude sensitivity 
test) are featured in Saltelli et al. 2000b. 
 
D.5.7  Which Method to Use? 
A panel of experts was recently assembled to review various sensitivity analysis methods. The panel  
refrained from explicitly recommending a “best” method and instead developed a list of attributes for 
preferred sensitivity analysis methods. The panel  recommended that methods should preferably be able 
to deal with a model regardless of assumptions about a model’s linearity and additivity, consider  
interaction effects among input uncertainties, cope  with differences in the  scale and shape of input PDFs,  
cope with differences in input spatial and temporal dimensions, and evaluate the effect of an input while 
all other inputs are allowed to vary as well (Frey 2002; Saltelli 2002). Of the various methods discussed 
above, only those based on variance (Section D.5.6) are characterized by these attributes.  When one or  
more of the criteria are not important, the other tools discussed in this section will provide a  reasonable  
sensitivity assessment.  
 
As mentioned earlier, choosing the most appropriate sensitivity analysis method will often  entail a trade-
off between computational complexity, model assumptions, and the amount of information needed from  
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the sensitivity analysis. As an aid to sensitivity analysis method selection, the table below summarizes the 
features and caveats of the methods discussed above. 

Method Features Caveats Reference 
Screening 
methods 

May be conducted 
independent of model 
run 

Potential for significant error if 
model is non-linear 

Cullen and Frey 
1999, pp. 247-8. 

Morris’s 
one-at-a-time 

Global sensitivity 
analysis 

Indicates, but does not 
quantify interactions 

Saltelli et al. 
2000b, p. 68. 

Differential 
analyses 

Global sensitivity 
analysis for linear model; 
local sensitivity analysis 
for nonlinear model 

No treatment of interactions 
among inputs 

Assumes linearity, 
monotonicity, and continuity 

Cullen and Frey 
1999, pp. 186-94. 
Saltelli et al. 
2000b, pp. 183-91 

Monte Carlo 
analyses 

Intuitive 

No assumptions 
regarding response 
surface 

Depending on number of 
input variables, may be time-
consuming to run, but 
methods to simplify are 
available 

May rely on assumptions 
regarding input PDFs 

Cullen and Frey 
1999, pp. 196-237 

Morgan and 
Henrion 1990, pp. 
198-216. 

Variance-
based 

Robust and independent 
of model assumptions 

Addresses interactions 

May be computationally 
difficult. 

Saltelli et al. 
2000b, pp. 167-97 

D.6 Uncertainty  Analysis 
D.6.1 Model Suitability  
An evaluation of model suitability to resolve application niche uncertainty (Section 4.1.3.1) should  
precede any evaluation of data uncertainty and model performance.  The extent to which a model is 
suitable for a proposed application depends on: 

• Mapping of model attributes to the problem statement  
• The degree of certainty needed in model outputs 
• The amount of reliable data available or resources available to collect additional data 
• Quality of the state of knowledge on which the model is based 
• Technical competence of those undertaking simulation modeling 

Appropriate data should be available before any attempt is made to apply a model.  A model that needs 
detailed, precise input data should not be used when such data are unavailable. 

D.6.2 Data Uncertainty  
There are two statistical paradigms that can be adopted to summarize data.  The first employs classical  
statistics and is useful for capturing the most likely or “average” conditions observed in a given system.  
This is  known as the “frequentist” approach to summarizing model input data.  Frequentist statistics rely  
on measures of central tendency (median, mode, mean values) and represent uncertainty as the  
deviation from these metrics.  A frequentist or “deterministic” model produces a single set of  solutions for  
each model run.  In contrast, the alternate statistical paradigm employs a probabilistic framework, which 
summarizes  data according to their “likelihood” of occurrence.  Input data are represented as  distributions 
rather than a single numerical value and models outputs capture a range of possible values.   
 
The classical view of probability defines the probability of an event occurring  by the value to which the  
long run frequency of an event or quantity converges as the number of trials increases (Morgan and  
Henrion 1990).  Classical statistics relies on measures of central tendency (mean, median, mode) to  
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define model parameters and their associated uncertainty (standard deviation, standard error, confidence 
intervals). 

In contrast to the classical view, a subjectivist or Bayesian view is that the probability of an event is the 
current degree of belief that a person has that it will occur, given all of the relevant information currently 
known to that person.  This framework involves the use of probability distributions based on likelihoods 
functions to represent model input values and employs techniques like Bayesian updating and Monte 
Carlo methods as statistical evaluation tools (Morgan and Henrion 1990).  
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